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Abstract

RESPONSE ADAPTIVE RANDOMIZATION USING SURROGATE AND

PRIMARY ENDPOINTS

By Hui Wang

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2016

Major Director: Nitai Mukhopadhyay, Ph.D., Associate Professor, Department of

Biostatistics

In recent years, adaptive designs in clinical trials have been attractive due to their

efficiency and flexibility. Response adaptive randomization procedures in phase II

or III clinical trials are proposed to appeal ethical concerns by skewing the proba-

bility of patient assignments based on the responses obtained thus far, so that more

patients will be assigned to a superior treatment group. General response-adaptive

randomizations usually assume that the primary endpoint can be obtained quickly

after the treatment. However, in real clinical trials, the primary outcome is delayed,

making it unusable for adaptation. Therefore, we utilize surrogate and primary end-

points simultaneously to adaptively assign subjects between treatment groups for

clinical trials with continuous responses. We explore two types of primary endpoints

commonly used in clinical tirials: normally distributed outcome and time-to-event

outcome. We establish a connection between the surrogate and primary endpoints

viii
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through a Bayesian model, and then update the allocation ratio based on the ac-

cumulated data. Through simulation studies, we find that our proposed response

adaptive randomization is more effective in assigning patients to better treatments

as compared with equal allocation randomization and standard response adaptive

randomization which is solely based on the primary endpoint.
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Chapter 1

Introduction

1.1 Adaptive Design

Clinical trials are prospective intervention studies with human subjects to investi-

gate experimental drugs, new treatments, medical devices, or clinical procedures,

under rigorously specified conditions [Yin, 2013]. Traditionally, clinical trials are de-

signed with fixed sample size and allocation probabilities among treatment group. No

changes can be made while the trial goes on and accumulated information becomes

available. In 2006, the United States Food and Drug Administration (FDA) released

a critical path opportunities list which recommended the creation of innovative and

efficient clinical trials that apply the accumulated information in the trial design

[Food et al., 2007]. Specidically, the FDA began encouraging the use of adaptive

design methods in clinical trials.

Adaptive designs in clinical trials are attractive due to their efficiency and flex-

1
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ibility. However, there is no universal definition of it. In 2006, the pharmaceutical

research and Manufacturers of America (PhRMA) defined an adaptive design as a

clinical trial design that uses accumulating data to decide on how to modify as-

pects of the study as it continues, without undermining the validity and integrity of

the trial[Gallo et al., 2006]. Based on this definition, adaption is the main feature

to improve the design. In 2010, the U.S. Food and Drug Administration (FDA)

released a guidance on the regulatory aspects of adaptive designs[Administration

et al., 2010]. The FDA explains that there is great interest in the possibility that

clinical trials can be designed with adaptive features that may make the studies

more efficient (e.g., shorter duration, fewer patients), more likely to demonstrate a

treatment effect, or more informative (e.g., broader dose-response findings). In the

guidance, the adaptive design clinical study is referred to as a study that includes a

prospectivly planned opportunity for modification of one or more specified aspects

of the study design and hypotheses based on analysis of data (usually interim data)

from subjects in the study. Based on adaptations employed in general, commonly

considered adaptive design methods in clinical trials include adaptive randomiza-

tion, group sequential methods, sample size re-estimation, adaptive dose finding,

adaptive treatment-switching, etc[Chow et al., 2008]. Another way of classifying

adaptive design clinical trials is by categorizing them based on four different rules:

Allocation rule, sampling rule, stopping rule, and decision rule[Mahajan and Gupta,

2010]. Allocation rules define how subjects are allocated to different arms in a trial,

which includes response-adaptive randomization and covariate adaptive allocation.

Sampling rules define how many subjects will be sampled at the next stage, which

2
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includes sample size re-estimation and drop-the-loser designs. Stopping rules de-

fine when to stop the trial, which includes group sequential design and adaptive

treatment-switching design. Decision rules refer to changes not covered under the

other three categories, which may include hypothesis-adaptive design and change the

primary end-point or statistical method or patient population design.

1.2 Response Adaptive Randomization

In clinical trials, patients are assigned to different groups to receive different treat-

ments. The process of assigning patients to different groups by chance is called

randomization. The primary goal of randomization is to prevent bias in allocat-

ing subjects to treatment groups, thereby obtaining a credible and unbiased result.

Traditionally, equal randomization or randomization with a fixed ratio (e.g. 1 : 3)

among the groups are commonly used in clinical trials. The main feature of tradi-

tional randomization is that the probability of assigning patient to each treatment

group is fixed and pre-determined. Even through when the trial proceeds, one may

find that the treatment group performs better than the control group, the allocation

probability can never be changed. However, there is one ethical concern that more

patients should be assigned to the better treatment group if evidence of superior-

ity exists. Recently, the response adaptive randomization or RAR becomes popular

since it can change the allocation probabilities when the trial goes on.

Response-adaptive randomization procedures in clinical trials are proposed to

appeal the ethical concerns by skewing the probability of patient assignments based

3
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on the responses obtained thus far, so that more patients will be assigned to a

superior treatment group[Zhang and Rosenberger, 2006]. The preliminary ideas of

response adaptive design was proposed by Thompson (1933) and Robins (1952), and

have been further developed by other researchers. Most of the available works in

adaptive randomization designs have been focused on binary outcomes[Biswas and

Bhattacharya, 2012]. Examples include the play-the-winner rule (Zelen, 1969), the

randomized play-the-winner rule (Wei and Durham, 1978), the success-driven design

(Durham, Flournoy and Li, 1998), the drop-the-loser design (Ivanova, 2003), and the

generalized drop-the-loser design (Zhang, Chan and Cheung, 2007), etc. However,

many real clinical trials need to deal with continuous outcomes. For example, Wilson

et al. (1998) used office-recorded diastolic blood pressure reduction, which may be

considered to have an approximate normal distribution, as the primary outcome to

evaluate the antihypertensive efficacy of losartan and amlodipine[Wilson et al., 1998].

Fu et al. (1998) considered wound healing time, which is a time to event outcome,

as the primary outcome to evaluate the efficacy of topical recombinant bovine basic

fibroblast growth factor for second-degree burns[Fu et al., 1998].

In 1993, Rosenberger introduced a reasonable allocation design for the case of

general (not necessarily dichotomous) responses[Rosenberger et al., 1993]. He used

the idea of treatment effect mapping, in which the allocation probabilities are func-

tions of the current estimate of treatment effect. This method can be used for clini-

cal trials with continuous responses to skew the allocation to the better treatment.

Later on, some other response-adaptive designs have been developed for continuous

responses in clinical trials, such as the continuous drop-the-loser rule, Wilcoxon-

4
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Mann-Whitney-type adaptive design, doubly adaptive biased coin designs (DBCD),

Kernel-based allocation designs, etc. Except for DBCD, all the other designs men-

tioned above are not based on any optimal consideration. For those designs which are

not based on any optimality criteria, they may have high variability which may lead

to significant loss in power[Zhang and Rosenberger, 2006]. When a smaller response

is desirable, Zhang and Rosenberger (2006) suggested that the DBCD procedure with

optimal allocation can reduce total expected response and simultaneously maintain

power, and should be the first choice for response-adaptive randomization designs

with continuous outcome. So our response-adaptive design will be an extension of

the doubly adaptive biased coin design procedure with optimal allocation. More

details of this procedure will be discussed in Chapter 2.

1.3 Motivation

The general response-adaptive randomization mentioned above assumes that the pri-

mary endpoint can be obtained quickly after the treatment. However, in real clinical

trials, and not only for survival outcomes, one may need to take a relatively long

time to observe the primary endpoints. Some studies have been done on delayed

primary endpoints and their effect on response-adaptive randomization in the liter-

ature. Zhang and Rosenberger (2006) explored the effect of delayed responses on

response-adaptive randomization for continuous outcomes based on some simulation

studies[Zhang and Rosenberger, 2006]. They found that moderate delays in responses

have little effect on the power and asymptotic properties of the DBCD procedure.

5
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Later on, Hu et al. studied the effects of delayed responses in DBCD mathemati-

cally[Hu et al., 2008]. They found that the asymptotic properties of the allocation

proportions are unaffected by staggered entry and delayed responses in reasonable

probability models. Even though moderate delays in responses have no effect on the

asymptotic properties of randomization procedure under certain delay mechanisms,

the allocation rate through the trial is directly affected and there is a higher risk of

assigning more patients to the inferior treatment[Sinks, 2013].

We are motivated to propose a new response-adaptive randomization method

that incorporates one or more surrogate endpoints, that are correlated with the pri-

mary endpoint. In clinical trials, a biomarker is defined as a characteristic that

is objectively measured and evaluated as an indicator of normal biological pro-

cesses, pathogenic processes, or pharmacologic responses to a therapeutic interven-

tion[Group, 2001]. A surrogate endpoint is a biomarker that is intended to substi-

tute for a clinical endpoint. Even though a surrogate endpoints can be selected so

that it is measured earlier than the primary endpoint, the incorporation of that in

response-adaptive randomization has not been fully explored. Huang et al. (2009)

perhaps are the first who use short-term response information to facilitate adaptive

randomization in clinical trials. They proposed a new design for survival trials that

connects short-term response with long-term survival to ’speed up’ the adaptation of

the randomization procedure[Huang et al., 2009]. In their study, they assume that

conditional on the categorical short-term responses, the long-term response follows

an exponential distribution. However, they didn’t optimize the allocation design in

their study. Sinks (2013) proposed a bivariate response adaptive design for binary

6
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primary endpoint where a binary auxiliary endpoint was used to assist the adapta-

tion with the primary endpoint [Sinks, 2013]. She found that the bivariate adaptive

design was more effective in assigning patients to better treatments as compared

with univariate optimal and balanced designs. Rencently, Nowacki et al. (2015) pro-

posed a surrogate-primary (S-P) replacement algorithm where a patent’s surrogate

outcome is used in the response-adaptive randomization only until their primary out-

come becomes available to replace it[Nowacki et al., 2015]. They showed that the S-P

replacement algorithm performs better than the standard approach by reducing the

probability variability and increasing convergence of the treatment allocation ratio

toward its target.

In my dissertation study, we will focus on clinical trials with continuous pri-

mary outcomes. We assume that there is a delay in the primary endpoint, but the

surrogate endpoint which is associated with the primary endpoint can be observed

immediately. We will propose a new response-adaptive randomization method that

will utilize surrogate and primary endpoints at the same time for clinical trials with

continuous primary responses. The connection of surrogate and primary endpoints

is established through a Bayesian model. We will draw inferences about parameters

of interest through a Markov Chain Monte Carlo (MCMC) simulation. Then these

parameters will be used to calculate the desired target allocation to estimate the

optimal proportion for allocating subjects between treatments. Finally, we will use

these sequentially estimated proportions based on DBCD rule to skew the allocation.

Details will be discussed in later chapters.

7
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1.4 Organization of this thesis

In Chapter 2, we will review some current statistical approaches of response adap-

tive randomization for clinical trials with continuous outcomes. These approaches are

solely based on the primary endpoint, and always assume that the primary endpoint

can be observed immediately after treatment. Even through researchers have shown

that for continuous response, the delayed response has no effect on the asymptotic

properties of the randomization procedure under very general conditions, we still

believe that the delay in the primary response will influence the performance of the

standard response adaptive randomization, where only the accumulated information

from primary endpoint is considered during the randomization procedure. To illus-

trate this issue, we will conduct some simulation studies with different proportion

of delays in the primary endpoint to show the drawback of the standard response

adaptive randomization.

In Chapter 3, we will consider a clinical trial where both surrogate and primary

endpoints have a normal distribution and propose a new response adaptive random-

ization procedure which will extend the standard adaptive randomization design for

normally distributed continuous outcomes to simultaneously account for the surro-

gate endpoint. We will refer to the allocation procedure proposed by Zhang and

Rosenberger[Zhang and Rosenberger, 2006] as the univariate optimal adaptive de-

sign for continuous outcomes. Under this procedure, the optimal allocation ratio

is obtained by minimizing the total expected response of patients if we assume a

lower response is desirable. To implement the surrogate endpoint in the adaptation

process, we assume that the surrogate and primary endpoints follow a bivariate nor-

8
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mal distribution. Thus given the surrogate endpoint, the conditional distribution of

the primary endpoint will also be normal. We will start with the conditional model

of primary endpoint given surrogate to perform the adaptive randomization proce-

dure. Conjugate priors will be given to the parameters in the conditional model. The

allocation ratio for each subject will be calculated based on the posterior mean of pa-

rameters in the conditional model. A simulation study will be performed to compare

the performance, specifically in power and treatment assignment skewing to better

treatment, of simple randomization, univariate optimal adaptive randomization, and

bivariate optimal adaptive randomization.

In Chapter 4, we will focus on clinical trials where the primary endpoint is a

time-to-event outcome. Specifically, we assume that the primary endpoint follows

an exponential distribution and there is a categorical surrogate endpoint that can be

obtained immediately after the treatment. Then we will propose a new randomiza-

tion algorithm which will extend the standard adaptive randomization for survival

trials to simultaneously account for a binary surrogate endpoint. We will refer to the

allocation procedure proposed by Zhang and Rosenberger as the univeriate optimal

adaptive design for survival outcomes [Zhang and Rosenberger, 2007]. Under this

procedure, the optimal allocation proportion is obtained by minimizing the total

expected hazard. To implement the surrogate endpoint in the randomization proce-

dure, we assume that the surrogate endpoint follows a multinomial distribution and

given the surrogate endpoint, the primary endpoint follows a mixture of exponential

distribution. We will estimate the parameters of interest through a Bayesian model,

and then apply these estimates to the optimal allocation function to skew the al-

9
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location probability. The performance of the proposed algorithm will be evaluated

through a series of simulations.

In Chapter 5, we will discuss the two randomization procedures we proposed in

the previous two chapters, and some future works that can be done.

10
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Chapter 2

Current statistical approaches of

response-adaptive randomization

for continuous outcomes

Response-adaptive designs can be classified into two categories. The first is the

target-driven response-adaptive design that is based on an optimal allocation tar-

get, where a specific criterion is optimized based on a population response model.

The second class is the design-driven response-adaptive randomization, where al-

location rules are established with an intuitive motivation, but not optimal in a

formal sense[Rosenberger and Lachin, 2004]. In this dissertation study, the proposed

randomization procedure in chapter 3 and chapter 4 will be based on the first cate-

gory, which is target-driven response adaptive randomization. So in this chapter, we

are only going to review some commonly used optimal response-adaptive designs in

11
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clinical trials with continuous outcome.

2.1 Doubly adaptive biased coin designs

Doubly adaptive biased coin design (DBCD) is a family of response-adpative pro-

cedures that can be used to target a desired allocation proportion ρ. It was first

proposed by Eisele in 1994 and then sequentially modified by some other researchers

[Eisele and Woodroofe, 1995].

Eisele (1994) and Woodroffe (1995) proposed a DBCD procedure for two treat-

ment groups to target any desired allocation proportion ρ to treatment A. They

defined a function g(x, y) on [0, 1]2 × [0, 1] which needs to satisfy the following con-

ditions:

(i) g is jointly continuous;

(ii) g(x, x) = x,

(iii) g(x, y) is strictly decreasing in x and strictly increasing in y on [0, 1]2, and

(iv) g has bounded derivatives in both arguments.

Suppose j subjects have been randomized to the two treatment groups, then the

DBCD procedure will allocate the (j + 1)th subject to treatment A with probability

g(nAj/j, ρ̂j), where nAj is the number of subjects assigned to treatment A so far,

and ρ̂j is the estimated target allocation proportion based on the first j subjects.

Thus, the double adaptive biased coin design (DBCD) depends on both the current

observed allocation proportion and the estimate of target allocation proportion.

The key component of this procedure is the choice of an appropriate allocation

12
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function g(x, y). Hu and Zhang (2004) proposed the following family of allocation

function:

g(α)(x, y) =


1 if x = 0

y( y
x

)α

y( y
x

)α+(1−y)( 1−y
1−x )α

if 0 < x < 1

0 if x = 1

where α ≥ 0 and controls the degree of randomness of the procedure[Hu and Zhang,

2004]. Different choices of α lead to different allocation procedures. For example, if

α = 0, then g(α)(x, y) = y and we will have the Sequential Maximum Likelihood Esti-

mation, where at each stage the target allocation proportion is estimated, preferably

by the maximum likelihood method, and the next incoming subject will be assigned

to treatment A with this probability. In general, a DBCD procedure with a large

value of α will provide a smaller variance but will decrease the degree of random-

ness[Biswas and Bhattacharya, 2012]. Therefore, α should be chosen to reflect the

trade-off between the degree of randomness and the variation [Atkinson and Biswas,

2013]. Suppose NA is the number of subjects assigned to treatment A and n is the

total sample size. Hu and Zhang (2004) showed that under mild conditions, both

NA/n and ρ̂ converge to ρ almost surely, and have an asymptotic bivariate normal

distribution.

2.2 Optimal response-adaptive designs

As we mentioned before in section 2.1, the double adaptive biased coin design

(DBCD) depends on the target allocation proportion. For ethical consideration in

13
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response-adaptive randomization in clinical trials, it is desired to target an allocation

proportion which is optimal in some sense[Zhang and Rosenberger, 2006].

2.2.1 General approach

To develop an optimal allocation design, we need to define a clinically relevant cri-

terion and then try to optimize it. In 2007, Biswas et al. proposed a general ap-

proach to obtain the optimal target allocation for clinical trials with continuous

outcomes[Biswas et al., 2007]. Consider a clinical trial with two treatment groups

and let k be the treatment indicator, where k = 1, 2. Let Xk be the primary out-

come which is assumed to have a continuous distribution with mean µk and finite

variance σ2
k, k = 1, 2. Let n1 and n2 be the sample sizes for the two treatments

in a non-randomized manner. Then for the general approach, one may choose to

minimize

n1Ψ1 + n2Ψ2

subject to the restriction

σ2
1

n1

+
σ2

2

n2

= K

where Ψk is a positive function of (µk, σk), which will be different for different goal

of the trial, and K is a constant. Solving this optimization problem, we can obtain

the optimal allocation proportion to treatment 1 as below:

ρ =
σ1

√
Ψ2

σ1

√
Ψ2 + σ2

√
Ψ1

14
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Here, ρ depends on unknown parameters and these unknown parameters can be

estimated through either frequentist or Bayesian method.

2.2.2 Allocations for normally distributed responses

Now consider the situation where the primary endpoint has normal distribution. We

assume that the primary outcomes for each treatment group are normally distributed

with X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2), respectively. Without loss of generality, we

assume that a small response is desirable. As we mentioned before, different choices

of Ψ1 = g(µ1, σ1) and Ψ2 = g(µ2, σ2) can be made, and these Ψ1 and Ψ2 reflect

different goals or targets of the trial. So far, only a few optimal adaptive designs

are available for continuous responses with normal distribution. In this section, we

will summarize some of these available allocation proportions that are commonly

discussed in the literature.

If Ψk = 1 for each of the two treatment groups, then the optimization problem is

to minimize the total sample size for a fixed variance of the estimated treatment dif-

ference[Biswas and Bhattacharya, 2012]. The solution for this optimization problem

is the well-known Neyman allocation which can be expressed as

ρ =
σ1

σ1 + σ2

(2.1)

where ρ is the optimal allocation proportion to treatment 1.

If we let Ψk = µk, for k = 1, 2, then the optimization problem is equivalent to

minimize the total expected response from all patients. This optimization problem

15
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was proposed by Zhang and Rosenberger in 2006 [Zhang and Rosenberger, 2006].

Define r = σ1
√
µ2/σ2

√
µ1 and

s =


1 if ( µ1 < µ2 and r > 1) or (µ1 > µ2 and r < 1),

0 otherwise.

Then the optimal allocation proportion to treatment 1 for this problem will be

ρ =


σ1
√
µ2

σ1
√
µ2+σ2

√
µ1

if s = 1,

1
2

otherwise.

(2.2)

Furthermore, another choice of Φk could be Ψk = Φ(µk−c
σk

) where c is a predefined

threshold constant and Φ(·) is the cumulative density function of standard normal

distribution. This optimization problem was proposed by Biswas and Mandal in

2004 and the aim is to minimize the total number of patients with response greater

than some threshold constant[Biswas and Mandal, 2004]. Solving this optimization

problem, we can obtain the optimal allocation proportion to treatment 1 as below:

ρ =

√
Φ(µ2−c

σ2
)σ1√

Φ(µ2−c
σ2

)σ1 +
√

Φ(µ1−c
σ1

)σ2

Zhang and Rosenberger (2006) compared the performance of the above three ran-

domization procedures through a simulation study, and they found that the DBCD

procedure with their optimal allocation proportion can reduce the total expected

response and simultaneously maintain the power, and thus should be the first choice

16
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for response adaptive randomization with continuous outcomes [Zhang and Rosen-

berger, 2006]. Thus in chapter 3, where the primary endpoint is assumed to be

normally distributed, we will extend the optimal allocation procedure proposed by

Zhang and Rosenberger in equation 3.1 to simultaneously account for the information

from surrogate endpoint.

2.2.3 Allocations for survival responses

For clinical trials with survival or time-to-event outcomes, inherent delay is com-

mon. Zhang and Rosenberger (2007) developed a response-adaptive randomization

procedure for survival outcomes with censoring and delay by using a parametric

approach that involves a target optimal allocation and a randomization procedure

with low variability[Zhang and Rosenberger, 2007]. Consider a clinical trial with two

treatment groups, and k is the treatment indicator, where k = 1, 2. Let nk be the

number of subjects assigned to treatment k. Now we assume that for the ith subject

in treatment k, the survival time Tik follows an exponential distribution with mean

θk. Furthermore, let Ci be the censoring time and is assumed to be independent of

Tik. Then for each subject i, one observes a pair of random variables (tik, δik), where

tik = min(Tik, Ci) is the observed time and δik is an indicator of event (δik = 1 if

the ith subject has an event; and δik = 0 if the ith subject is censored). Assume

εk = E(δik) is the same for subjects in the same treatment group. Under the above

assumption, Zhang and Rosenberger (2007) proposed an optimal allocation propor-

tion where the target is to minimize the total expected hazard. The optimization

17
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problem can be stated below:


min
nA/nB

n1θ
−1
1 + n2θ

−1
2

s.t. θ2
1/n1ε1 + θ2

2/n2ε2 = K

In this case, Ψk = θ−1
k and σ2

k =
θ2k
εk

. And the corresponding optimal allocation

proportion to treatment 1 is

ρ =

√
θ3

1ε2√
θ3

1ε2 +
√
θ3

2ε1

Another choice could be Ψk = 1 for k = 1, 2, and the aim is to minimize the

total number of subjects in the trial. Solving this problem will obtain the Neyman

allocation, where the optimal allocation proportion to treatment 1 is

ρ =
θ1
√
ε2

θ1
√
ε2 + θ2

√
ε1

2.3 Delayed responses

An important assumption for the double adaptive biased coin design was that the

primary outcome can be observed immediately after the treatment. However, it is

common that responses may not be available before the randomization of next sub-

ject and will be available after a period of time. Hu et al.(2008) examined the effect

of delayed responses on DBCD procedures and derived some of their asymptotic

properties[Hu et al., 2008]. Suppose that the subjects arrive sequentially in a clini-
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cal study, and the subjects delay time is not unreasonably large compared to their

arrival time, then they found out that under widely satisfied conditions for the delay

mechanism, the asymptotic properties of DBCD procedure remain insensitive to a

stochastic delay in updating the sequential estimator of the unknown parameters.

However, in real clinical trials, the delay in the primary endpoint will influence the

implementation of adaptive randomization. For example, when no primary outcome

becomes available for the next patient, then no information can be used to skew the

allocation proportion, and thus a simple randomization (e.g. equal allocation) needs

to be used for this patient. To illustrate this issue, we will conduct some simulations.

Consider a clinical trial with two treatment groups, and the primary outcome is

continuous. To be specific, suppose the primary outcome is normally distributed,

such that XA ∼ N(µA, σ
2
A), XB ∼ N(µB, σ

2
B), respectively. Furthermore, suppose

there is a constant enrollment rate. Therefore, there is a fixed delay time in the

primary endpoint. For example, to observe the primary outcome from the first

patient, 20 more patients enroll in the trial. Which means, the response of the first

patient will be available when the 21st patient enrolls in the trial, and the response

of the second patient will be available when the twenty second patient enrolls in

the trial, etc. Figure 2.1 shows the effect of delay in the primary responses for the

standard response adaptive randomization (only consider the primary endpoint).

As we can see from the plot, if there is no delay in the primary endpoint (all

the primary outcomes are available), then the proportion pf patients assigned to

treatment A is equal to the target allocation proportion. However, as the delay

in the primary endpoint increases (the proportion of primary outcomes available
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Figure 2.1: The effect of delay on treatment allocation when using standard response
adaptive randomization.

decreases), the proportion of patients assigned to treatment A decreases. And when

there is no primary outcome available, the proportion equals to 0.5, which is the same

as the traditional equal randomization. This means that as the delay time increases,

the difference between the target allocation proportion and the observed allocation

proportion becomes larger, and thus the benefit of assigning more patients to a

better treatment group disappears. Moreover, we can also see from the plot that

the variability of the allocation proportion to treatment A is getting larger when

more primary outcomes become available. That is because the allocation probability

changes whenever a new patient enrolls.

The standard response adaptive randomization is influenced by the delay in the
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primary endpoint. The benefit of assigning more patients to a better treatment group

disappears when there is a large delay time in the primary endpoint. Thus, we are

motivated to propose a new algorithm to simultaneously account for the information

from the surrogate endpoint, such that the benefit of assigning more patients to a

better treatment group will not disappear even when there is a large delay time in

the primary response.
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Chapter 3

Bivariate Response Adaptive

Design for Continuous Outcomes

In this chapter, we will propose a new response adaptive randomization for clinical

trials with normally distributed primary endpoint. In section 3.1, we will have a

brief review of the standard response adaptive randomization for clinical trials with

normally distributed primary endpoint. Then we will extend the standard adaptive

randomization procedure to simultaneously account for the information from the

surrogated endpoint by assuming a correlation between the surrogate and primary

endpoints in section 3.2. Finally in section 3.3, we will compare the proposed al-

gorithm with the standard response adaptive randomization and traditional equal

allocation procedure through some simulation studies.
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3.1 Response adaptive randomization using pri-

mary endpoint only

In the classical response adaptive procedure, consider a clinical trial with only two

treatment groups: Treatment A and Treatment B, and we want to compare the

difference between the two treatments with normally distributed responses, such

that TA ∼ N(µT,A, σ
2
t,A) and TB ∼ N(µT,B, σ

2
t,B), respectively. Suppose a smaller

response is desirable and we will consider the randomization procedure proposed

by Zhang and Rosenberger (2006) as the standard response adaptive randomization

(RAR), where the optimization problem is:


min
nA/nB

µT,AnA + µT,BnB

s.t.
σ2
t,A

nA
+

σ2
t,B

nB
= K

nA and nB refer to the cumulative number of subjects assigned to treatment A and

treatment B respectively, and K is some constant. Solving this problem yields the

optimal allocation proportion to treatment A as

ρ =

√
µT,Bσt,A

√
µT,Bσt,A +

√
µT,Aσt,B

Then they defined r = σ1
√
µ2/σ2

√
µ1 and

s =


1 if ( µ1 < µ2 and r > 1) or (µ1 > µ2 and r < 1),

0 otherwise.
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and modified the optimal allocation proportion to treatment A as

ρ =


σ1
√
µ2

σ1
√
µ2+σ2

√
µ1

if s = 1,

1
2

otherwise.

(3.1)

As we mentioned before in Chapter 2, the Doubly Adaptive Biased Coin Design

(DBCD) procedure can be used to target any allocation proportion ρ. Throughout

this paper, we will use the DBCD procedure proposed by Hu and Zhang (2004)

g(α)(x, y) =


1 if x = 0

y( y
x

)α

y( y
x

)α+(1−y)( 1−y
1−x )α

if 0 < x < 1

0 if x = 1

(3.2)

to skew the allocation at each randomization stage to target our optimal allocation

proportion. Here, α is a nonnegative number that controls the randomness of the

procedure. Then the probability of assign the (j + 1)th subject to treatment A is

g(nAj/j, ρ̂j), where nAj/j is the observed proportion of subjects assigned to treatment

A so far, and ρ̂j is the estimate of ρ in equation (3.1) after the j subjects. Hu and

Zhang (2004) have shown that both NA/n and ρ̂ approach to the target allocation

proportion ρ as n increases.

For the above standard response adaptive randomization, the randomization pro-

cedure is solely based on the information from the primary endpoints. In that case,

this procedure will perform better when the primary endpoint can be observed im-

mediately relative to the enrollment period. In practice, however, one may need a
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relatively long time to obtain the primary outcome. When there are delayed primary

responses, less information will be available to skew the allocation.

3.2 Proposed method

Many clinical trials have surrogate endpoints that can by observed sooner than the

primary endpoint. These surrogate endpoints will provide additional information

about the primary endpoints which can be used in the randomization procedure. In

this section, we will propose a new response adaptive randomization design which

will extend the standard RAR to simultaneously account for the information from

the surrogate endpoint.

3.2.1 Likelihood distribution

Suppose Si and Ti are the surrogate and primary endpoints for the ith subject,

respectively. We assume that both the surrogate and primary endpoints have a

normal distribution. Specifically, we assume that Si and Ti follow a bivariate normal

distribution with mean vector µ and variance-covariance matrix ΣL. That is

 Si

Ti

 ∼ N2


 µS

µT

 ,

 σ2
s σst

σst σ2
t


 (3.3)

where

µ =

 µS

µT

 and ΣL =

 σ2
s σst

σst σ2
t

 .
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Based on the properties of the bivariate normal distribution, the conditional distri-

bution of primary endpoint given surrogate endpoint for subject i is also a normal

distribution:

Ti|Si = si ∼ N(µti|si , σ
2
t|s) (3.4)

where the conditional mean and variance can be expressed as:

µti|si = µT + σstσ
2
s(si − µS)

σ2
t|s = σ2

t − σ2
stσ
−2
s

The contribution to the likelihood from subject i is the joint distribution of sur-

rogate and primary endpoint f(si, ti), which can be expressed as a product of two

parts: the marginal distribution of the surrogate endpoint f(si), and the condi-

tional distribution of primary endpoint given the surrogate endpoint f(ti|si). Let

D = (S1, · · · , Sn, T1, · · · , Tn) be the data that contains the surrogate and primary

endpoints, and ΘL = (µS, µT , σ
2
s , σ

2
t , σst) be the vector of unknown parameters, then

the likelihood for all the parameters in the model will be:

Ln(ΘL|D) =
n∏
i=1

f(si, ti) =
n∏
i=1

f(ti|si)f(si)

=
n∏
i=1

 1

2π
√
σ2
s

exp

{
−(si − µS)2

2σ2
s

}
× 1

2π
√
σ2
s|t

exp

{
−

(ti − µti|si)2

2σ2
t|s

}
(3.5)
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3.2.2 Prior distribution

In this section, we will explore the use of conjugate priors for the purpose of obtaining

the posterior distribution of conditional mean and variance.

Normal-Inverse-Wishart Distribution

In probability theory and statistics, the Normal-inverse-Wishart(NIW) distribution

is a multivariate four-parameter family of continuous probability distributions. It is

the conjugate prior of a multivariate normal distribution with unknown mean and

unknown variance-covariance matrix[Murphy, 2007]. In our study, we assume that

the joint prior distribution of mean vector µ and variance-covariance matrix ΣL is a

Normal-inverse-Wishart distribution, such that (µ,ΣL) ∼ NIW (µ0, κ0, R, υ). Under

the above prior assumption, the prior distribution of mean µ is dependent on the

prior of variance-covariance matrix ΣL. Specifically, this prior distribution can be

expressed as below:

µ|ΣL ∼ N(µ0,ΣL/κ0)

ΣL ∼ IW (R, υ)

where µ0 is a parameter vector, κ0 is the sample size that the prior belief about µ is

equivalent to, R is a parameter matrix, and υ is the degrees of freedom.
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Then the prior distribution of (µ,ΣL) can be expressed as

p(µ,ΣL) = p(µ|ΣL)p(ΣL) = N2(µ0,ΣL/κ0)IW (R, υ)

=
|R|υ2

2
υp
2 Γ(υ

2
)

(
2π

κ0

)− p
2

|ΣL|−
υ+p
2
−1 exp

{
−1

2
tr(RΣ−1

L )− κ0

2
(µ− µ0)′Σ−1

L (µ− µ0)

}
∝ |ΣL|−

υ+p
2
−1 exp

{
−1

2
tr(RΣ−1

L )− κ0

2
(µ− µ0)′Σ−1

L (µ− µ0)

}
(3.6)

where p is the rank of ΣL and p = 2 in this case.

Partitioning the Inverse-Wishart Distribution

As we mentioned in the previous section, the likelihood function is expressed as a

product of the marginal density of surrogate endpoint and the conditional density

of the primary endpoint given the surrogate endpoint. In consequence, the prior

distribution on ΣL needs to be partitioned, since the prior distributions should be

placed on parameters σ2
s and σ2

t|s[Shi, 2007]. The partitioning can be achieved by

applying the normal theory laid out by Dreze and Richard[Dreze and Richard, 1983].

Suppose the p×p random matrix Σ ∈ Cp has an Inverse-Wishart distribution, where

Cp denotes the set of p×p symmetric positive definite matrices. Specifically, suppose

Σ ∼ IW (R, υ), where R is a p× p matrix and υ is the degree of freedom. The first

moment of this density function is

E(Σ) =
1

υ − p− 1
R (υ > p+ 1).
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If both Σ and R can be partitioned as

Σ =

Σ11 Σ12

Σ21 Σ22

 , R =

R11 R12

R21 R22


where Σ11 and R11 are p1× p1, Σ22 and R22 are p2× p2, Σ12 and R12 are p1× p2, and

Σ21 and R21 are p2 × p1 matrices. Furthermore, if we define

Σ22.1 = Σ22 − Σ21Σ−1
11 Σ12 Ω = Σ−1

11 Σ12

R22.1 = R22 −R21R
−1
11 R12 Ω̃ = R−1

11 R12

Then we will have

p(Σ11,Ω,Σ22.1) = p(Σ11)p(Ω|Σ22.1)p(Σ22.1) (3.7)

with

Σ11 ∼ IWp1×p1(R11, υ − p2) (3.8a)

Ω|Σ22.1 ∼MNp1×p2(Ω̃,Σ22.1 ⊗R−1
11 ) (3.8b)

Σ22.1 ∼ IWp2×p2(R22.1, υ) (3.8c)

The Ω|Σ22.1 in equation (3.8b) is a random matrix rather that a vector, and MN is

the matrix normal distribution which is the generalization of the multivariate normal

distribution.
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Partitioning the Inverse-Wishart prior on ΣL

In this chapter, since we only consider one surrogate endpoint, the variance-covariance

matrix ΣL is a 2× 2 matrix. The following partitioning on both random matrix ΣL

and parameter matrix R are considered:

ΣL =

σ2
s σst

σst σ2
t

 R =

r2
s rst

rst r2
t


where σ2

s , σst, σ
2
t , r

2
s , rst, and r2

t are all scalars. Therefore, the Inverse-Wishart prior

distribution for ΣL can be partitioned into the following three parts:

σ2
s ∼ IW1×1(r2

s , υ − 1) (3.9a)

Ωst|σ2
t|s ∼MN1×1(Ω̃st, σ

2
t|s ⊗ r−2

s ) (3.9b)

σ2
t|s ∼ IW1×1(r2

t|s, υ) (3.9c)

where

σ2
t|s = σ2

t − σ2
stσ
−2
s Ωst = σ−2

s σst

r2
t|s = r2

t − r2
str
−2
s Ω̃st = r−2

s rst

The Inverse-Wishart distributions for σ2
s in equation (3.9a) and σ2

t|s in equa-

tion (3.9c) are one-dimensional. The matrix normal distribution in equation (3.9b)

is one-dimensional as well. Since the univariate special case of the Inverse-Wishart

distribution is the Inverse-Gamma distribution, and the one-dimensional matrix nor-
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mal distribution will reduce to univariate normal distribution, the partition of the

Inverse-Wishart prior distribution for ΣL can be rewritten as

σ2
s ∼ IG(

υ − 1

2
,
r2
s

2
) (3.10a)

Ωst|σ2
t|s ∼ N(Ω̃st, σ

2
t|sr
−2
s ) (3.10b)

σ2
t|s ∼ IG(

υ

2
,
r2
t|s

2
) (3.10c)

3.2.3 Estimation rule for allocation rate

In our proposed algorithm, we will use the conditional mean and conditional variance

of primary endpoint given surrogate endpoint for each treatment group to update

the allocation proportion for the next subject. To make inferences for the unknown

parameters, a Bayesian approach will be introduced. The Bayesian approach can

be used to estimate the entire posterior distribution, and there is no requirement

for the sample size. The Markov chain Monte Carlo (MCMC) method is a general

simulation method for sampling from posterior distributions and computing posterior

quantities of interest. It provides a convenient computation approach to fitting a

Bayesian model of a bivariate normal distribution. Thus, we will use the MCMC

method to fit our bivariate normal distribution model.

Suppose there are two treatment groups: A and B. Let µA = (µS,A, µT,A)′ be the

mean vector for treatment A, where µS,A and µT,A are the means of the surrogate and

primary endpoint for treatment A, respectively. Similarly, µB = (µS,B, µT,B)′ is the

mean vector for treatment B. ΣA is the variance-covariance matrix for treatment
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A and ΣB is for treatment B, where the two variance-covariance matrices can be

expressed as below:

ΣA =

σ2
s,A σst,A

σst,A σ2
t,A

 ΣB =

σ2
s,B σst,B

σst,B σ2
t,B


Suppose that the variance-covariance matrix for each treatment group has a Normal-

Inverse-Wishart prior as described in section 3.2.2, such that (µA,ΣA) ∼ NIW (µ0, κ0, R, υ)

and (µB,ΣB) ∼ NIW (µ0, κ0, R, υ). Furthermore, the variance-covariance matrices

ΣA and ΣB and the parameter matrix R will be partitioned as described in section

3.2.2, such that:

σ2
s,A ∼ IG(

υ − 1

2
,
r2
s

2
), σ2

s,B ∼ IG(
υ − 1

2
,
r2
s

2
)

Ωst,A|σ2
t|s,A ∼ N(Ω̃st, σ

2
t|s,Ar

−2
s ), Ωst,B|σ2

t|s,B ∼ N(Ω̃st, σ
2
t|s,Br

−2
s )

σ2
t|s,A ∼ IG(

υ

2
,
r2
t|s

2
), σ2

t|s,B ∼ IG(
υ

2
,
r2
t|s

2
)

where

Ωst,A = σ−2
s,Aσst,A, Ωst,B = σ−2

s,Bσst,B

Suppose Ti and Si are the primary and surrogate endpoints for subject i, respec-

tively. Let Zi denote the treatment indicator for the ith subject, where Zi = 1 if

subject i is in treatment A and Zi = 0 if in treatment B. Before assigning the ith

subject, we can get the Bayes estimator of µA = (µS,A, µT,A)′, µB = (µS,B, µT,B)′,

σ2
s,A, σ2

s,B, Ωst,A, Ωst,B, σ2
t|s,A, σ2

t|s,B, which will be denote as µ̃A = (µ̃S,A, µ̃T,A)′,
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µ̃B = (µ̃S,B, µ̃T,B)′, σ̃2
s,A, σ̃2

s,B, Ω̃st,A, Ω̃st,B, σ̃2
t|s,A, σ̃2

t|s,B, respectively. Besides, the

following information can be obtained from the first i− 1 subjects:

nA,i =
i−1∑
k

Zk, nB,i =
i−1∑
k

(1− Zk)

SA,i =
i−1∑
k

SkZk, SB,i =
i−1∑
k

Sk(1− Zk)

The above information will be used in the allocation procedure.

3.2.4 Algorithm of the design

The proposed algorithm for response adaptive randomization for clinical trials with

normally distributed primary outcome is described below:

S1. Use the equal allocation randomization procedure for a certain number of sub-

jects at the beginning of the trial. Equal randomization is a useful way to

obtain initial parameter estimates that are required in a sequential estimation

procedure, such as the doubly adaptive biased coin design (DBCD) procedure.

As recommended by Nowachi et al., the number of subjects that are equally

allocated to treatment A and treatment B in the beginning are typically cho-

sen as 5% − 10% of the total sample size[Nowacki et al., 2015]. Suppose 2m0

subjects are equally assigned to each treatment groups, where 2m0 was chosen

as 10% of the total sample size.

S2. Before allocating the ith subject, update the following information based on

the first i− 1 subjects:
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nA,i : current total number of subjects assigned to treatment A;

nB,i : current total number of subjects assigned to treatment B;

S̄A,i = 1
nA,i

SA,i : mean of surrogate response assigned to treatment A so far;

S̄B,i = 1
nB,i

SB,i : mean of surrogate response assigned to treatment B so far;

S3. Calculate the Bayes estimators of conditional mean and variance of primary

endpoint given surrogate endpoint for each treatment group through a Bayesian

model based on the accumulated data:

σ̃2
t|s,A : estimate of conditional variance of primary endpoint given surrogate

endpoint for treatment A;

σ̃2
t|s,B : estimate of conditional variance of primary endpoint given surrogate

endpoint for treatment B;

µ̃t|s,A = µ̃t,A + Ω̃st,A(S̄A,i − µ̃s,A) : estimate of conditional mean of primary

endpoint given surrogate endpoint for treatment A;

µ̃t|s,B = µ̃t,B + Ω̃st,B(S̄B,i − µ̃s,B) : estimate of conditional mean of primary

endpoint given surrogate endpoint for treatment B;

S4. Calculate the current observed allocation proportion for treatment A and the

current target allocation proportion for treatment A:

rA,i =
nA,i

nA,i+nB,i
: current observed proportion of subjects assigned to treatment

A;

ρ̂ =

√
µ̃t|s,B σ̃

2
t|s,A√

µ̃t|s,B σ̃
2
t|s,A+
√
µ̃t|s,Aσ̃

2
t|s,B

: current estimate of target allocation proportion

to treatment A.
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S5. Apply both the current observed treatment A allocation proportion and the

current treatment A target allocation proportion calculated in the previous step

to the DBCD procedure to calculate the treatment A allocation probability for

the ith subject:

Prob(TrtA) =
ρ̂( ρ̂

rA,i
)α

ρ̂( ρ̂
rA,i

)α + (1− ρ̂)( 1−ρ̂
1−rA,i

)α

where α is a nonnegative number that reflects the desired degree of random-

ization.

S6. Randomize the next subject using this treatment A allocation probability

Prob(TrtA).

S7. Repeat steps 2 - 6 until reaching the predetermined sample size.

3.3 Simulation study

3.3.1 Simulation targets

In this section, some simulation studies will be conducted to investigate the perfor-

mance of our proposed response adaptive randomization (RAR) for clinical trials with

normally distributed primary endpoint and correlated normally distributed surrogate

endpoint under different clinical scenarios. Specifically, our proposed algorithm will

be compared with equal randomization and standard RAR proposed by Zhang and

Rosenberger in 2006 (when only the primary endpoint was considered in the ran-
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domization procedure). There are two criteria that can be used to evaluate the

performance of response-adaptive randomization procedure[Zhang and Rosenberger,

2006]. One is the total expected response of the primary endpoint which will rep-

resent the ethical constraints. The procedure that gives the smallest total expected

response will be the most ”ethical” procedure. The other criteria that can be used is

the power of the test. In our simulation study, we are interested in: 1) how different

correlation between primary and surrogate endpoints affect the simulation results,

in terms of power, allocation proportions, number of subjects assigned to each treat-

ment group, and total expected response of the primary endpoint; 2) the effect of

delay in the primary endpoint; 3) how different sample sizes affect the simulation

results.

3.3.2 Sampling method

To make the three allocation procedures (equal randomization, standard RAR, and

proposed RAR) comparable, the total sample size will be calculated based on the two-

sided two-sample Welch’s t-test (unequal variance t-test) when we wish to have equal

sample sizes in each treatment groups. More specifically, the sample size is selected to

yield a 80% power at significance level of 0.05. The correlated primary and surrogate

endpoints are sampled from a bivariate normal distribution. As recommended by

Hu and Zhang,the exponential distributions are used for both the delay times of

primary endpoint for the two treatment groups and the subject entry time [Hu et al.,

2008]. The Gelman-Rubin diagnostic will be used as a numerical support to monitor

the convergence of iterative simulations. This approach is, for each parameter of
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interest, to compute the variance of the simulations from each chain, to average

these within-chain variances, and compare this to the variances of all the chains

mixed together [Gelman et al., 2011]. Basically, Gelman-Rubin measures whether

there is a significant difference between the variance within several chains and the

variance between several chains by a value that is called “scale reduction factors”.

3.3.3 Simulation settings

The correlated surrogate and primary endpoints for each treatment groups were

generated from the bivariate normal distribution:

 SA

TA

 ∼ N2 (µA,ΣA) ,

 SB

TB

 ∼ N2 (µB,ΣB)

where

µA =

 µs,A

µt,A

 , ΣA =

 σ2
s,A σst,A

σst,A σ2
t,A


and

µB =

 µs,B

µt,B

 , ΣB =

 σ2
s,B σst,B

σst,B σ2
t,B


The correlation between surrogate and primary endpoint will be denoted as ρst,A

and ρst,B, which can be calculated from the variance-covariance matrix. In our

simulation study, suppose there is a positive correlation between the surrogate and

primary endpoints, and the correlation for each treatment group is the same, which

is ρst,A = ρst,B = ρs,t. We are going to consider three different strengths for this
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relationship: low correlation(0.3 ≤ ρs,t < 0.5), moderate correlation(0.5 ≤ ρs,t <

0.7), and high correlation(0.7 ≤ ρs,t < 0.9). Table 3.1 below shows the possible

values of the parameters that we are going to use to generate the data.

Table 3.1: Parameters in the bivariate normal distribution model

Parameters Values

(µs,A, µs,B) (20, 24)

(µt,A, µt,B) (12.5, 15) (13, 15) (13.5, 15) (14, 15)

(σs,A, σs,B) (4, 3)

(σt,A, σt,B) (4, 2.5) (2.5, 4)

ρs,t 0.35 0.6 0.85

As mentioned in section 3.3.2 , the exponential distributions were used for the

delay times and subject entry times. Suppose the mean parameters of the delay

times of primary endpoint for treatment A and B are λ1 and λ2, respectively, and

the mean parameter for the subject entry times for both treatment groups is λ3. We

are going to consider two different delay scenarios. The first one corresponds to a

case where there are similar but moderate delay times for the primary responses of

the two treatment groups, such that (λ1, λ2, λ3) = (1, 1, 1). And then we considered

(λ1, λ2, λ3) = (10, 10, 1), which represents a large but identical delay times for both

treatment groups. Table 3.2 lists the different experimental scenarios of our simula-

tion study. Here, treatment B was considered as the control group and we assume

that treatment A always performs better than treatment B since a smaller response

is desirable. Scenarios Ia-Ig correspond to a situation when there is a weak correla-

tion between the surrogate and primary endpoints; scenarios IIa-IIe correspond to
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a moderate correlation; and scenarios IIIa-IIIe correspond to a strong correlation

between the surrogate and primary endpoints.

Normal-Inverse-Wishart prior distribution was placed on (µA,ΣA) and (µB,ΣB),

respectively. Conditional on the variance-covariance matrix, the mean vector has

a bivariate normal distribution, such that: µA|ΣA ∼ N2(µ0,ΣA/κ0), and µB|ΣB ∼

N2(µ0,ΣB/κ0). We take the prior expectations of µA and µB to be both a vector of

0’s, but with very large standard deviations. We also consider a weak prior distribu-

tion on the variance-covariance matrices ΣA and ΣB. Specifically, the following prior

parameters are used:

µ0 =

 0

0

 , R =

 1 0

0 1

 , κ0 = 0.001, υ = 4

For standard response adaptive randomization procedure, the maximum likeli-

hood estimators were used to calculate the allocation ratio. For the double adaptive

biased coin design (DBCD) (3.2), α = 2 was used, as suggested by Rosenberger and

Hu[Rosenberger and Lachin, 2004]. They found that such a choice of α provides a

reasonable trade-off between the randomness and optimality. 5, 000 simulations per

scenario was used to evaluate the performance of the proposed response adaptive

randomization. To assess the Markov Chain convergence, 3 chains with dispersed

initial values were used in each simulation to test whether they all converge to the

same target distribution.
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3.3.4 Results

To investigate the performance of our proposed response adaptive randomization

(proposed RAR) algorithm, the power, allocation proportions to the better treat-

ment group (treatment A), number of subjects assigned to better treatment group

(treatment A), and total expected response from all subjects under the proposed

allocation algorithm are compared with these under the equal allocation, and the

standard response adaptive randomization.

Table 3.7 shows a comparison of equal allocation randomization, standard re-

sponse adaptive randomization (standard RAR), and proposed response adaptive

randomization (proposed RAR) in terms of power for the two-sided two-sample t-

test. Both the standard RAR and proposed RAR yield a larger power compared

to equal allocation randomization, which is consistent with the conclusion made by

Rosenberger and Hu that the doubly-adaptive biased coin design was as powerful

or slightly more powerful than the equal allocation procedure [Rosenberger and Hu,

2004]. The power under the proposed RAR algorithm is similar to that under the

standard RAR, and it is neither influenced by the delay times in the primary end-

point, nor by the correlation between the primary and surrogate endpoints.

Table 3.8 shows the comparison of the three randomization procedures in terms

of the number of subjects assigned to treatment A, along with their standard devi-

ations. As we can see from the table, except for scenarios Ib, IIb, and IIIb, both

the standard RAR and proposed RAR assign more subjects to the better treatment

group than the equal allocation randomization procedure; compared to the standard

RAR, the proposed RAR tends to assign slightly more subjects to treatment A (the
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proposed algorithm assigns, on average, 1 to 2 more subjects to the better treatment

group, compared with the standard RAR procedure). For scenarios Ib, IIb, and

IIIb, where µT,A < µT,B, and σt,A < σt,B, the target allocation ratio calculated based

on ρ =
√
µT,Bσt,A√

µT,Bσt,A+
√
µT,Aσt,B

is less than 1/2, however, it is inappropriate to allocate

more subjects to the inferior treatment group (treatment B), thus the number of

subjects assigned to the better treatment group under both the standard RAR and

proposed RAR are the same as equal allocation randomization. Since the equal al-

location algorithm does not use the responses during the randomization procedure,

its performance is not affected as the delay in the primary endpoint increases. Even

the benefit of the standard RAR in terms of assigning more subjects to the better

treatment group does not change as the delay increases, the standard deviations of

number of subjects assigned to treatment A are getting larger when there is a larger

delay in the primary endpoint. The proposed RAR algorithm maintains the ben-

efit of assigning more subjects to the better treatment group, and is not sensitive

when the delay times increase. When there is a higher correlation between the surro-

gate and primary endpoint, the proposed algorithm has a similar or slightly smaller

standard deviations of the number of subjects assigned to treatment A.

Table 3.9 shows the observed allocation proportion with standard deviations for

the three randomization procedures. As expected, except for scenarios Ib, IIb, and

IIIb, both the standard RAR and proposed RAR allocate more than 50% subjects to

the better treatment group A. For different delay times in the primary endpoint, the

observed allocation proportions under the proposed RAR are similar. The variability

in the allocation proportions under the proposed RAR algorithm changes when we
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change the correlation between the primary and surrogate endpoints. Specifically,

the standard deviation is getting slightly larger when we decrease the correlation

between the surrogate and primary endpoints.

Table 3.10 shows the total responses with their standard deviations for the

three randomization procedures. Our proposed algorithm results in a comparable

or slightly reduction of the total observed responses.

Figure 3.1 and 3.2 compare the performance of the standard RAR and the pro-

posed RAR algorithm with regard to the treatment allocation under different delay

parameters. The mean and standard deviation are presented in those figures. In

figure 3.1 when the delay parameters are (λ1, λ2, λ3) = (10, 10, 1), the propose RAR

algorithm seems to have a smaller variability and stabilize a little bit quicker than the

standard RAR, even through the difference is not that huge. In Figure 3.2 when there

is a relatively large delay in the primary endpoint where (λ1, λ2, λ3) = (80, 80, 1),

we can see that our proposed algorithm reduces the variability and stabilizes much

quicker than the standard RAR.

3.4 Discussion

The standard response adaptive randomization procedures, which solely depend on

the primary endpoint, are affected by the delays in obtaining the primary outcome

measures. When there is a relatively long lag time to observe the primary end-

point, the benefit of standard RAR disappears since few outcome can be used to

skew the allocation probability. The proposed algorithm accounts for the informa-
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tion from the surrogate endpoint in the randomization procedure. Instead of only

using the primary endpoint, the proposed RAR algorithm simultaneously accounts

for the surrogate endpoint. Thus, more information will be used to skew the allo-

cation proportion to assign more subjects to the better treatment group under the

proposed method. The proposed algorithm results in more subjects in the superior

treatment group, while comparable to the standard response adaptive randomiza-

tion procedures. Under the proposed algorithm, the strength of correlation between

the primary and surrogate endpoints does not influence the power and the alloca-

tion proportion, but do affect the variability of allocation proportion to the better

treatment group.

However, there are some limitations of the proposed algorithm. First, this ap-

proach assumes that the surrogate endpoint can be observed immediately after the

treatment, which is not always the case. Second, the proposed method we discussed

so far only consider one surrogate endpoint. When there are multiple surrogates

available, it would be better if we can use those information in the randomization

procedure. If all the surrogate endpoints are normally distributed, then we can easily

extend the proposed response adaptive randomization from one surrogate endpoint

to a multiple surrogate version. Third, the proposed algorithm is only suitable when

both the surrogate and primary endpoints are normally distributed. We will consider

other distributions of surrogate and primary endpoints in the later chapters.
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N = 160. Simulations = 100.
ρst = 0.85, µT,A = 13.5, σt,A = 2.5, µT,B = 15, σt,B = 4, µS,A = 20, σs,A = 4, µS,B = 25, σs,B = 3.

The first 20 subjects were randomized using equal allocation randomization.

Figure 3.1: Comparison of the variation of the standard RAR method and proposed RAR
algorithm for handling delayed primary outcomes with (λ1, λ2, λ3) = (10, 10, 1).
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N = 160. Simulations = 100.
ρst = 0.85, µT,A = 13.5, σt,A = 2.5, µT,B = 15, σt,B = 4, µS,A = 20, σs,A = 4, µS,B = 25, σs,B = 3.

The first 20 subjects were randomized using equal allocation randomization.

Figure 3.2: Comparison of the variation of the standard RAR method and proposed RAR
algorithm for handling delayed primary outcomes with (λ1, λ2, λ3) = (80, 80, 1).

45



www.manaraa.com

Table 3.2: Parameter setup for different experimental scenario

Scenario N (λ1, λ2, λ3) ρst
Treatment A Treatment B

(µT,A, σt,A) (µS,A, σs,A) (µT,B, σt,B) (µS,B, σs,B)

Ia 90 (10, 10, 1) 0.35 (13, 4) (20, 4) (15, 2.5) (24, 3)

Ib 90 (10, 10, 1) 0.35 (13, 2.5) (20, 4) (15, 4) (24, 3)

Ic 90 (1, 1, 1) 0.35 (13, 4) (20, 4) (15, 2.5) (24, 3)

Id 160 (10, 10, 1) 0.35 (13.5, 4) (20, 4) (15, 2.5) (24, 3)

Ie 178 (10, 10, 1) 0.35 (12.5, 5.8) (20, 4) (15, 6) (24, 3)

If 350 (10, 10, 1) 0.35 (14, 4) (20, 4) (15, 2.5) (24, 3)

IIa 90 (10, 10, 1) 0.6 (13, 4) (20, 4) (15, 2.5) (24, 3)

IIb 90 (10, 10, 1) 0.6 (13, 2.5) (20, 4) (15, 4) (24, 3)

IIc 90 (1, 1, 1) 0.6 (13, 4) (20, 4) (15, 2.5) (24, 3)

IId 160 (10, 10, 1) 0.6 (13.5, 4) (20, 4) (15, 2.5) (24, 3)

IIe 178 (10, 10, 1) 0.6 (12.5, 5.8) (20, 4) (15, 6) (24, 3)

IIIa 90 (10, 10, 1) 0.85 (13, 4) (20, 4) (15, 2.5) (24, 3)

IIIb 90 (10, 10, 1) 0.85 (13, 2.5) (20, 4) (15, 4) (24, 3)

IIIc 90 (1, 1, 1) 0.85 (13, 4) (20, 4) (15, 2.5) (24, 3)

IIId 160 (10, 10, 1) 0.85 (13.5, 4) (20, 4) (15, 2.5) (24, 3)

IIIe 178 (10, 10, 1) 0.85 (12.5, 5.8) (20, 4) (15, 6) (24, 3)

IIIf 350 (10, 10, 1) 0.85 (14, 4) (20, 4) (15, 2.5) (24, 3)
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Table 3.3: Summary of power of the three randomization procedures using the two-sided
two-sample t-test

Scenario Sample size (N) Equal Allocation Standard RAR Proposed RAR

Ia 90 0.797 0.829 0.832

Ib 90 0.810 0.807 0.817

Ic 90 0.797 0.830 0.832

Id 160 0.802 0.825 0.836

Ie 178 0.801 0.812 0.801

If 350 0.801 0.816 0.821

IIa 90 0.795 0.835 0.828

IIb 90 0.806 0.806 0.817

IIc 90 0.795 0.837 0.832

IId 160 0.804 0.828 0.830

IIe 178 0.801 0.816 0.806

IIIa 90 0.798 0.839 0.830

IIIb 90 0.808 0.807 0.814

IIIc 90 0.798 0.839 0.828

IIId 160 0.802 0.828 0.826

IIIe 178 0.801 0.815 0.805

IIIf 350 0.798 0.821 0.816
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Table 3.4: Summary of average number of subjects assigned to treatmentA, with standard
deviations (SD) for the three randomization procedures

Scenario Sample size (N) Equal Allocation Standard RAR Proposed RAR

Ia 90 45 (4.80) 57 (5.06) 58 (5.46)

Ib 90 45 (4.79) 45 (2.64) 45 (2.51)

Ic 90 45 (4.80) 57 (4.65) 58 (5.12)

Id 160 80 (6.34) 100 (6.09) 102 (6.54)

Ie 178 89 (6.64) 93 (5.30) 93 (5.48)

If 350 175 (9.32) 218 (9.18) 219 (9.02)

IIa 90 45 (4.79) 57 (5.07) 58 (5.32)

IIb 90 45 (4.79) 45 (2.58) 45 (2.41)

IIc 90 45 (4.79) 57 (4.63) 58 (5.09)

IIc 160 80 (6.34) 100 (6.17) 101 (6.51)

IId 178 89 (6.64) 93 (5.29) 93 (5.37)

IIIa 90 45 (4.79) 57 (4.99) 58 (5.01)

IIIb 90 45 (4.80) 45 (2.62) 45 (2.30)

IIIc 90 45 (4.79) 57 (4.62) 58 (4.81)

IIId 160 80 (6.24) 100 (6.23) 101 (6.39)

IIIe 178 89 (6.64) 93 (5.28) 93 (5.45)

IIIf 350 175 (9.32) 218 (9.06) 219 (9.08)
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Table 3.5: Summary of observed allocation proportion of treatment A, with standard
deviations (SD) for the three randomization procedures

Scenario Sample size (N) Equal Allocation Standard RAR Proposed RAR

Ia 90 0.500 (0.0532) 0.634 (0.0562) 0.646 (0.0607)

Ib 90 0.500 (0.0532) 0.500 (0.0293) 0.501 (0.0279)

Ic 90 0.500 (0.0532) 0.633 (0.0517) 0.649 (0.0569)

Id 160 0.500 (0.0396) 0.627 (0.0381) 0.635 (0.0409)

Ie 178 0.500 (0.0373) 0.522 (0.0297) 0.525 (0.0308)

If 350 0.500 (0.0266) 0.622 (0.0262) 0.625 (0.0258)

IIa 90 0.500 (0.0533) 0.633 (0.0563) 0.645 (0.0592)

IIb 90 0.500 (0.0533) 0.500 (0.0287) 0.501 (0.0267)

IIc 90 0.500 (0.0533) 0.633 (0.0514) 0.647 (0.0565)

IIc 160 0.500 (0.0396) 0.627 (0.0386) 0.634 (0.0407)

IId 178 0.500 (0.0373) 0.522 (0.0297) 0.523 (0.0301)

IIIa 90 0.500 (0.0533) 0.633 (0.0555) 0.641 (0.0557)

IIIb 90 0.500 (0.0533) 0.500 (0.0291) 0.501 (0.0255)

IIIc 90 0.500 (0.0533) 0.633 (0.0513) 0.643 (0.0535)

IIId 160 0.500 (0.0396) 0.626 (0.0390) 0.633 (0.0399)

IIIe 178 0.500 (0.0373) 0.522 (0.0297) 0.524 (0.0306)

IIIf 350 0.500 (0.0266) 0.622 (0.0259) 0.624 (0.0260)

49



www.manaraa.com

Table 3.6: Summary of observed total responses, with standard deviations (SD) for the
three randomization procedures

Scenario Sample size (N) Equal Allocation Standard RAR Proposed RAR

Ia 90 1260 (33.47) 1236 (35.95) 1233 (36.30)

Ib 90 1260 (33.18) 1260 (32.16) 1261 (31.59)

Ic 90 1260 (33.47) 1235 (35.97) 1234 (35.46)

Id 160 2280 (44.04) 2250 (46.95) 2248 (46.30)

Ie 178 2448 (81.21) 2438 (79.61) 2437 (79.86)

If 350 5075 (63.38) 5032 (67.39) 5031 (67.40)

IIa 90 1260 (33.39) 1236 (36.15) 1234 (36.23)

IIb 90 1260 (33.17) 1260 (32.26) 1261 (31.75)

IIc 90 1260 (33.39) 1236 (35.78) 1234 (35.64)

IId 160 2280 (44.26) 2249 (46.77) 2248 (46.44)

IIe 178 2448 (81.20) 2438 (79.56) 2437 (79.66)

IIIa 90 1260 (33.28) 1235 (36.22) 1234 (36.10)

IIIb 90 1260 (33.10) 1260 (32.37) 1261 (31.80)

IIIc 90 1260 (33.28) 1235 (35.93) 1234 (35.36)

IIId 160 2280 (44.04) 2249 (46.82) 2249 (46.13)

IIIe 178 2448 (81.21) 2437 (79.79) 2437 (79.80)

IIIf 350 5075 (63.05) 5032 (66.39) 5032 (67.09)
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Table 3.7: Summary of power of the three randomization procedures using the two-sided
two-sample t-test

Scenario Sample size (N) Equal Allocation Standard RAR Proposed RAR

Id 160 0.802 0.833 0.834

Ie 178 0.801 0.812 0.803

If 350 0.801 0.816 0.816

IId 160 0.804 0.836 0.830

IIe 178 0.801 0.816 0.801

IIId 160 0.802 0.828 0.825

IIIe 178 0.801 0.815 0.804

IIIf 350 0.798 0.821 0.816
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Table 3.8: Summary of average number of subjects assigned to treatmentA, with standard
deviations (SD) for the three randomization procedures

Scenario Sample size (N) Equal Allocation Standard RAR Proposed RAR

Id 160 80 (6.34) 100 (6.04) 102 (6.48)

Ie 178 89 (6.64) 93 (5.30) 93 (5.48)

If 350 175 (9.32) 218 (9.18) 219 (9.10)

IIc 160 80 (6.34) 100 (6.09) 101 (6.46)

IId 178 89 (6.64) 93 (5.29) 93 (5.35)

IIId 160 80 (6.24) 100 (6.23) 101 (6.32)

IIIe 178 89 (6.64) 93 (5.28) 93 (5.46)

IIIf 350 175 (9.32) 218 (9.06) 219 (9.08)
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Table 3.9: Summary of observed allocation proportion of treatment A, with standard
deviations (SD) for the three randomization procedures

Scenario Sample size (N) Equal Allocation Standard RAR Proposed RAR

Id 160 0.500 (0.0396) 0.627 (0.0378) 0.634 (0.0405)

Ie 178 0.500 (0.0373) 0.522 (0.0297) 0.524 (0.0308)

If 350 0.500 (0.0266) 0.622 (0.0262) 0.624 (0.0260)

IIc 160 0.500 (0.0396) 0.627 (0.0381) 0.634 (0.0404)

IId 178 0.500 (0.0373) 0.522 (0.0297) 0.523 (0.0301)

IIId 160 0.500 (0.0396) 0.626 (0.0390) 0.633 (0.0394)

IIIe 178 0.500 (0.0373) 0.522 (0.0297) 0.524 (0.0307)

IIIf 350 0.500 (0.0266) 0.622 (0.0259) 0.624 (0.0260)
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Table 3.10: Summary of observed total responses, with standard deviations (SD) for the
three randomization procedures

Scenario Sample size (N) Equal Allocation Standard RAR Proposed RAR

Id 160 2280 (44.04) 2249 (46.38) 2248 (46.50)

Ie 178 2448 (81.21) 2438 (79.61) 2437 (80.15)

If 350 5075 (63.38) 5032 (67.39) 5032 (67.37)

IId 160 2280 (44.26) 2249 (46.32) 2248 (46.51)

IIe 178 2448 (81.20) 2438 (79.56) 2438 (79.83)

IIId 160 2280 (44.04) 2249 (46.82) 2248 (46.17)

IIIe 178 2448 (81.21) 2437 (79.79) 2437 (79.99)

IIIf 350 5075 (63.05) 5032 (66.39) 5032 (67.09)
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Chapter 4

Response Adaptive Design for

Clinical Trials with Time-to-Event

Outcomes using Surrogate

Endpoint

When the outcome of interest is time to event, the procedure used in the previous

chapter does not apply exactly. In this chapter, we are going to propose a response

adaptive randomization for clinical trials with survival outcomes, which will simul-

taneously account for the surrogate endpoint. Almost always, the survival outcomes

are delayed. As a result, we are not able to adapt the design. A surrogate, which

can be observed early, is expected to help in making the design adapt toward the

right direction. The exponential model is the most fundamental parametric model

55



www.manaraa.com

and is commonly used in survival analysis. Moreover, the exponential distribution

usually leads to closed form theoretical results [Zhang and Rosenberger, 2007]. Thus,

we will assume the primary time-to-event outcome has an exponential distribution

throughout this chapter.

4.1 RAR using primary outcome only

Consider a simple clinical trial with two treatment groups, Treatment A and Treat-

ment B. Let nA and nB be the number of patients in each treatment group, and

nA + nB = n. Suppose that the the primary endpoint of interest is time to event

outcome. Specifically, suppose Tik is the survival time for the ith patient in group

k, and follows an exponential distribution with mean θk, k = A,B. Furthermore,

assume that the survival times are subject to right censoring. Let Ci be the censor-

ing time for the ith patient, and is assumed to be independent of the survival time

Tik. Then for the ith patient in treatment k, tik = min(Tik, Ci) is the observed or

censored survival time with corresponding indicator variable δik, where δik = 1 if the

ith patient in treatment k is observed, and δik = 0 if that patient is censored.

As we mentioned in section 2.2, the general technique to obtain an optimal target

allocation is to solve the following optimization problem:


min
nA/nB

nAΨA + nBΨB

s.t.
σ2
A

nA
+

σ2
B

nB
≤ κ

(4.1)

where µk and σ2
k, k = A,B, are the mean and finite variance of the primary response,

56



www.manaraa.com

and Ψk is a positive function of (µk, σk), which will be different for different goal of

the trial, and κ is a constant. Then the optimal allocation ratio would be

ρ =
σA
√

ΨB

σA
√

ΨB + σB
√

ΨA

(4.2)

Assume that εk = E(δik) is the non-censoring proportion for patients in each

treatment group, and is fixed for patients in the same treatment group. Then un-

der the above setup, Zhang and Rosenberger (2007) proposed an optimal allocation

proportion by minimizing the total expected hazard [Zhang and Rosenberger, 2007].

The optimal allocation proportion can be obtained from equation (4.1) by taking

Ψk = θ−1
k and σ2

k =
θ2k
εk

: 
min
nA/nB

nAθ
−1
A + nBθ

−1
B

s.t.
θ2A
nAεA

+
θ2B
nBεB

≤ κ

(4.3)

Solving the above optimization problem, we can get the optimal allocation proportion

of patients who are assigned to treatment A as

ρ =

√
θ3
AεB√

θ3
AεB +

√
θ3
BεA

(4.4)

The non-censoring proportion εk will depend on the censoring scheme used in the

trial. In this chapter, we will introduce the censoring scheme proposed by Rosen-

berger and Seshaiyer (1997) and assume their censoring scheme throughout this

chapter [Rosenberger and Seshaiyer, 1997]. Suppose the trial has a duration D > 0,

and a recruitment period of length R > 0 and R < D. Patients enter the trial
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sequentially and patient arrival times are independent and follow an uniform distri-

bution on [0, R]. Meanwhile, the censoring time C is independent from the survival

time and is assumed to be uniformly distributed over [0, D]. Patients who do not

respond by the end of the trial are considered as administratively censored. Then

for the ith patient, we can observe tik = min(Tik, Ci, D − R) and δik = 1 if tik = Tik

and δik = 0 otherwise. Zhang and Rosenberger (2007) found that the non-censoring

proportion εk = Pr(δik = 1) under the above censoring scheme has the following form

[Zhang and Rosenberger, 2007]

εk = 1− θk
D

+ exp

(
−D
θk

)
θk
DR

{
exp

(
R

θk

)
(2θk −R)− 2θk

}
(4.5)

Under equation (4.5), Sverdlov et al. (2011) have shown that for fixed values of D

and R, the non-censoring proportion εk is monotonically decreasing when the mean

parameter θk increases [Sverdlov et al., 2011]. This is easy to understand that the

longer the expected survival time, the less likely to observe an event (for example

death) before censoring, thus a smaller non-censoring proportion will be expected.

Then for the standard response adaptive randomization (RAR) where we only

consider the primary endpoint, the maximum likelihood estimator of the θk can be

obtained from the data and thus the optimal allocation proportion ρ can be estimated

every time before assigning the next patient.
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4.2 Proposed method

4.2.1 The finite mixture framework

A finite mixture model is a convex combination of two or more probability density

functions. It enriches the set of probability models by adding finite mixtures (or

weighted sums) of other standard distributions [Deb et al., 2008]. In general, the

density function of a m-component finite mixture is:

f(x) =
m∑
j=1

pjfj(x) (4.6)

where 0 < pj < 1 is weighting factor,
∑m

j=1 pj = 1, and fj(x) is the p.d.f. of the jth

component (e.g. Gaussian, Exponential, Weibull, etc).

In this chapter, we are going to consider a finite mixture of m exponential distri-

butions, which can also be called as a hyper-exponential distribution. Let X1, . . . , Xn

be a random sample from the hyper-exponential distribution, then the marginal dis-

tribution of X can be expressed as:

f(x) =
m∑
j=1

pj
1

θj
e
− x
θj (4.7)

The hyper-exponential cumulative distribution function for X, derived from equation

(4.7), is

F (x) =
m∑
j=1

pj(1− e
− x
θj ) (4.8)
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And the survival function for X, derived from (4.8), is

S(x) = 1− F (x) =
m∑
j=1

pje
− x
θj (4.9)

Then the expectation of X derived from hyper-exponential distribution in (4.7), can

be expressed as below:

E(X) =
m∑
j=1

pjθj (4.10)

4.2.2 Specifying the design parameters

Let nk be the number of subjects in treatment k, where k is the treatment indicator

and k = A or B. Suppose that there is a surrogate endpoint that has been validated

and this surrogate endpoint has m categories. Specifically, if the ith subject in treat-

ment k has a surrogate endpoint in the jth category, j = 1, 2, . . . ,m, then denote

this by Sk,j,i = 1 and Sk,r,i = 0 for 1 ≤ r ≤ m, r 6= j. Let Sk,i = (Sk,1,i, . . . , Sk,m,i) be

a vector, and we assume that the vectors are independent and identically distributed

across i = 1, . . . , nk, and each follows a multinomial distribution. Furthermore, sup-

pose the primary endpoint is a survival time that follows an exponential distribution,

and we denote Tk,i as the survival time for subject i in treatment k. Then condi-

tional on the surrogate endpoint being in the jth category, we assume Tk,i follows

an exponential distribution with mean parameter θk,j, j = 1, . . . ,m. Then under

the above assumptions, the primary endpoint Tk,i, i = 1, 2, . . . , nk, has a mixture of
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exponential distribution. The model can be presented as below:

k = A,B;

(Sk,1,i, Sk,2,i, . . . , Sk,m,i) ∼ Multi(1, pk,1, pk,2, . . . , pk,m);

Tk,i ∼
m∑
j=1

pk,jExp(θk,j)

(4.11)

where pk,j, j = 1, . . . ,m is the probability of a subject in treatment k having a

surrogate endpoint in the jth category, and
∑m

j=1 pk,j = 1, m ≥ 2. Based on the

model setup in (4.11), the marginal distribution of survival time (primary endpoint)

can be expressed as:

f(tk,i) =
m∑
j=1

pk,j
1

θk,j
e
−
tk,i
θk,j (4.12)

The survival function for the primary endpoint given the surrogate endpoint can be

written as

S(tk,i) =
m∑
j=1

pk,je
−
tk,i
θk,j (4.13)

The expectation of survival time for each group can be written as:

θk =
m∑
j=1

pk,jθk,j (4.14)

In this chapter, we are only going to consider the surrogate endpoint with two

categories, that is m = 2. So the mixture model will only have 2 components.

Suppose that associated with Tk,i, there is a censoring time Ci, and Ci is assumed to

be independent from Tk,i. Thus all subjects may have an event or be censored. Then
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for each subject, we will observe a pair of (tk,i, δk,i), where tk,i = min(Tk,i, Ci) is the

observed time and δk,i is an indicator if the event with δk,i = 1 if tk,i = Tk,i, and

δi = 0 if the ith subject in treatment k is censored. If we let φ = (θk,1, θk,2, pk,1, pk,2)

be a set of unknown parameters, then the likelihood function for the observed data

can be written as

L(φ|Data) =
B∏
k=A

nk∏
i=1

{f(tk,i)}δk,i {S(tk,i)}1−δk,i (4.15)

where f(ti) is the distribution of survival time for subject i as defined in equation

(4.12), and S(ti) is the corresponding survival function as equation (4.13).

4.3 Model fitting using MCMC

To make inference for the unknown parameters θk,j and pj, a Bayesian approach will

be introduced. Due to the complexity of the model, a Bayesian approach is deemed

to be appropriate. Posterior inference for mixture models can be performed via the

Markov Chain Monte Carlo simulation. Casella et al. (2002) mentioned that before

the Markov Chain Monte Carlo (MCMC) was introduced, there was no satisfactory

way to compute the Bayes estimators for mixture model [Casella et al., 2002, Marin

et al., 2005]. We are going to use the Gibbs sampler of Gelfand and Smith (1990) to

get the Bayes estimators of the unknown parameters.
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4.3.1 Label switching

Label-switching is a common issue in Bayesian estimation of mixture models. Con-

sider the mixture model in (4.12), where the mixture model has a finite number of

components (m). If the prior distributions on (θ1, . . . , θm) are exchangeable, then all

the marginals on the θj’s, j = 1, . . . ,m are identical, thus posterior distribution of

θj’s are invariant under permutations of the indices of the components. This means

that we cannot distinguish θ1 from θ2, θ1 from θ3, and so on, from the likelihood,

since they are exchangeable. This identifiability feature is crucial for both Bayesian

inference and computational issues [Marin et al., 2005].

There have been many suggestions as to how to deal with the label switching

problem. One solution is to use artificial identifiability constraints on the parameters

to break the symmetry in the likelihood [McLachlan and Peel, 2004]. For example,

if we go back to the mixture model in (4.12), a possible constraint is to order the

mean parameters, such that θ1 < θ2 < · · · < θm. This approach performs well when

the number of components is small. However, for a large number of components,

Celeux et al. pointed out that identifiability constraints have a consequence on the

posterior distributions, that it may lead to very poor estimates of the distribution in

the end. In that case, some other approach can be used to handle the label switching

issue, such as relabelling algorithms. We are not going to talk in detail of relabelling

algorithms in this chapter.
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4.3.2 Prior distribution

The Dirichlet distribution is a multivariate generalization of the beta distribution.

Similar to the beta distribution which can be used to measure the uncertainty about

two positive numbers that must sum to 1, the Dirichlet distribution can be used

to measure the uncertainty about m positive numbers that must sum to 1 [Es-

coto, 2013]. The Dirichlet distributions are commonly used as prior distributions

in Bayesian statistics. Moreover, just as the beta distribution is a conjugate prior

of the Bernoulli distribution, the Dirichlet distribution is the conjugate prior of the

categorical/ multinomial distribution.

In this chapter, we will consider the Dirichlet distribution as a prior for the

surrogate endpoint. Now go back to the mixture model in section (4.2.2), where

the surrogate endpoint follows a multinomial distribution, (Sk,1,i, Sk,2,i, . . . , Sk,m,i) ∼

Multi(1, pk,1, pk,2, . . . , pk,m) for k = A,B and i = 1, . . . , nk, where pk,j is the proba-

bility of a subject in treatment k has a surrogate endpoint in the jth category. Thus

in the Bayesian framework, we can assume that the vector of probability parame-

ters (pk,1, . . . , pk,m) has a Dirichlet prior with parameters (γk,1, . . . , γk,m), such that

(pk,1, . . . , pk,m) ∼ Dir(γk,1, . . . , γk,m). And the density function will be given by

π(pk,1, . . . , pk,m|γk,1, . . . , γk,m) =
1

B(γk,1, . . . , γk,m)

m∏
j=1

p
γk,j−1

k,j

∝
m∏
j=1

p
γk,j−1

k,j

(4.16)

where B(γk,1, . . . , γk,m) =
∏m
j=1 Γ(γk,j)

Γ(
∑m
j=1 γk,j)

. If we let γk,0 =
∑m

j=1 γk,j, then the expectation
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of each probability parameter is equal to E[pk,j] =
γk,j
γk,0

. Moreover, γk,0 reflects the

uncertainty of the mixed exponential prior distribution. Specifically, the larger the

sum of the parameters γk,0, the more certain we are of the true weights (or probability

parameters) [Escoto, 2013].

The Gamma distribution is a conjugate prior to the exponential distributions.

However, as we mentioned in section (4.3.1), if we put an inverse gamma prior on each

of mean parameters (θk,1, . . . , θk,m), then their marginal distributions are identical,

and their posterior distributions are invariant. To solve the label switching problem,

a semi-conjugate prior will be chosen for the mean parameters (θk,1, . . . , θk,m), that

is put an identifiability constraint on θk,1, . . . , θk,m, such that θk,1 > θk,2 > . . . > θk,m.

Remember that we will only consider that the surrogate endpoint has 2 categories

(m = 2). Then the constraint will be θk,2 < θk,1. Furthermore, if we assume both

θk,1 and θk,2 have an Inverse-Gamma prior with parameter (αk,1, βk,1) and (αk,2, βk,2),

respectively, then the semi-conjugate prior for θk,1 and θk,2 can be written as

π(θk,1, θk,2|αk,1, βk,1, αk,2, βk,2) =
βk,1

Γ(αk,1)
θ
−αk,1−1

k,1 exp(−βk,1
θk,1

)

× βk,2
Γ(αk,2)

θ
−αk,2−1

k,2 exp(−βk,2
θk,2

)I(θk,2 < θk,1)

∝ θ
−αk,1−1

k,1 θ
−αk,2−1

k,2 exp(−βk,1
θk,1
− βk,2
θk,2

)I(θk,2 < θk,1).

(4.17)

Combining the likelihood function in (4.15) and the above prior distributions

for (pk,1, pk,2) in (4.16) and (θk,1, θk,2) in (4.17), we will get the complete Bayesian

model and thus the posterior distribution of the set of unknown parameters φ =
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(θk,1, θk,2, pk,1, pk,2) given the data, which can be expressed as below:

π(θk,1, θk,2, pk,1, pk,2) ∝ L(φ|Data)π(pk,1, pk,2)π(θk,1, θk,2) (4.18)

4.3.3 Estimation procedure

To calculate the allocation rate, we need to estimate the marginal mean survival time

for each treatment group. As we mentioned before, the unknown parameters will be

estimated through a Bayesian model. Specifically, we will use the Markov Chain

Monte Carlo (MCMC) methods through JAGS and R to fit our proposed model

and then obtain samples from the posterior distribution. JAGS (Just Another Gibbs

Sampler) is a well established statistical program for analysis of Bayesian hierarchical

models using Markov Chain Monte Carlo (MCMC) simulation [Plummer et al., 2003].

In section (4.2.2), we assume that the surrogate endpoint has a multinomial

distribution, and conditional on the surrogate endpoint being in the jth category,

the primary outcome Tk,i follows an exponential distribution with mean parameter

θk,j:

k = A,B;

(Sk,1,i, Sk,2,i, . . . , Sk,m,i) ∼ Multi(1, pk,1, pk,2, . . . , pk,m);

Tk,i ∼
m∑
j=1

pk,jExp(θk,j)

As we mentioned in section (4.3.2), a semi-conjugate prior was chosen for the mean

parameters (θk,1, . . . , θk,m) to solve the label switching problem. To make the model
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easily implemented in JAGS, we will re-write the prior for the mean parameters

(θk,1, θk,2) as below:

θk,2 ∼ IG(αk,2, βk,2);

∆k ∼ IG(αk,0, βk,0);

θk,1 = ∆k + θk,2.

(4.19)

This prior setup can make sure that we put an identifiability constraint on the mean

parameters, such that θk,1 > θk,2. Then the Bayesian model for our mixture of two

exponential distributions can be present below:

k = A,B;

(Sk,1,i, Sk,2,i) ∼ Multi(1, pk,1, pk,2), fori = 1, 2, . . . , nk;

Tk,i ∼
2∑
j=1

pk,jExp(θk,j);

(pk,1, pk,2) ∼ Dir(γk,1, γk,2);

θk,2 ∼ IG(αk,2, βk,2);

∆k ∼ IG(αk,0, βk,0);

θk,1 = ∆k + θk,2.

(4.20)

where Exp(·) is the exponential distribution, Dir(·) is the Dirichlet distribution, and

IG(·) is the inverse gamma distribution. Then we will use the JAGS to obtain

the posterior mean of unknown parameters pk,1, pk,2, θk,1, θk,2, and denote them as

p̃k,1, p̃k,2, θ̃k,1, θ̃k,2, respectively. Then, we will use equation (4.10) to estimate the
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mean survival time for each treatment group:

θ̃k = p̃k,1θ̃k,1 + p̃k,2θ̃k,2

and plug these estimates in equation (4.5) to get the estimate of the non-censoring

proportion:

ε̃k = 1− θ̃k
D

+ exp

(
−D
θ̃k

)
θ̃k
DR

{
exp

(
R

θ̃k

)
(2θ̃k −R)− 2θ̃k

}

4.4 Algorithm of the design

The proposed algorithm for response adaptive randomization for survival primary

outcomes is described below:

S1. To begin with the procedure, first an equal randomization with a prefixed

number of subjects 2m0 will be performed. Equal randomization is a useful

way to obtain initial parameter estimates that are required in a sequential

estimation procedure, such as the DBCD procedure. However, the prefixed

number os subjects in the equal randomization procedure is not clear and most

time is arbitrary without any statistical justification [Xu and Yin, 2014]. Xu

and Yin (2014) selected the number of subjects in the equal randomization

stage large enough to make sure there is a treatment difference before they

moved to the adaptive randomization. Nowacki et al. (2015) chose 5%− 10%

of the total sample size in the equal randomization procedure [Nowacki et al.,

2015].
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S2. Before allocating the ith subject, update the following information based on

the first i− 1 subjects:

nA,i : current total number of subjects assigned to treatment A;

nB,i : current total number of subjects assigned to treatment B.

S3. Calculate the Bayes estimators of the unknown parameters through the Bayesian

model based on the accumulate data:

θ̃A = p̃1,Aθ̃1,A + p̃2,Aθ̃2,A : posterior estimate of marginal mean survival time

for A;

θ̃B = p̃1,B θ̃1,B + p̃2,B θ̃2,B : posterior estimate of marginal mean survival time

for B;

ε̃A : estimate of non-censoring proportion for subjects in treatment A;

ε̃B : estimate of non-censoring proportion for subjects in treatment A.

S4. Calculate the current treatment A allocation proportion and the current treat-

ment A target allocation proportion:

rA,i =
nA,i

nA,i+nB,i
: current observed proportion of subjects assigned to treatment

A;

ρ̂ =

√
θ̃3Aε̃B√

θ̃3Aε̃B+
√
θ̃3B ε̃A

: current estimate of target allocation proportion to treat-

ment A.

S5. Apply both the current observed treatment A allocation proportion and the

current treatment A target allocation proportion calculated in the previous step
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to the DBCD procedure to calculate the treatment A allocation probability for

the ith subject:

Prob(TrtA) =
ρ̂( ρ̂

rA,i
)α

ρ̂( ρ̂
rA,i

)α + (1− ρ̂)( 1−ρ̂
1−rA,i

)α

where α is a nonnegative number that reflects the desired degree of random-

ization.

S6. Randomize the next subject using this treatment A allocation probability

Prob(TrtA).

S7. Repeat steps 2 - 6 until reaching the predetermined sample size.

4.5 Simulation study

4.5.1 Simulation targets

In this section, we will conduct a number of simulations to evaluate the performance

of our proposed response adaptive randomization for clinical trials with time-to-event

primary outcome and binary surrogate endpoint under different clinical scenarios.

Specifically, our proposed algorithm will be compared with two other randomization

procedures: (i) equal randomization procedure for which each subjects is assigned

to either treatment A or treatment B with probabilities (0.5, 0.5) and (ii) the stan-

dard response adaptive randomization for survival outcome proposed by Zhang and

Rosenberger in 2007, where the allocation proportion is updated solely based on the
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primary endpoint.

As recommended by Sverdlov et al. (2011), several characteristics will be com-

pared between the proposed algorithm and the other two randomization procedures

to evaluate the performance of the new randomization procedure: (1) simulated allo-

cation proportions: larger proportion of subjects are expected to be assigned to more

efficacious treatment group; (2) the power for testing equality of treatment effects:

the power under the proposed algorithm is expected to be at least as powerful as the

other two randomization procedure; (3) average number of patients on the superior

treatment group; (4) average number of events (deaths); and (5) total observed sur-

vival time [Sverdlov et al., 2011]. So in our simulation study, we are interested in: 1)

how different response rate in the surrogate endpoint affect the simulation results,

in terms of the five characteristics we talked before; 2) the effect of delay (censoring

proportion) in the primary endpoint; and 3) how different sample sizes affect the

simulation results.

4.5.2 Sampling method

For each clinical scenario, the sample size was chosen such that the equal random-

ization procedure has at least 80% power and 0.05 significance level of the two-sided

Wald test for testing H0 : θA = θB:

Z =
θ̂A − θ̂B√

θ̂2
A/rA + θ̂2

B/rB
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where θ̂A and θ̂B are the maximum likelihood estimators of mean survival time for

each treatment group, and rA and rB are the total number of failures for each treat-

ment group.

The surrogate endpoint was sampled from a two dimensional multinomial dis-

tribution (or equally the binomial distribution). And then the primary endpoint

was sampled from a mixture of two exponential distributions based on the sampled

surrogate endpoint. As we mentioned before, Rosenberger and Seshaiyer’s (1997)

censoring scheme will be assumed throughout this chapter. So for both treatment

A and treatment B, subject arrival time was generated from a uniform distribution

over [0, R], and the censoring time was sampled from a uniform distribution over

[0, D]. For convergence diagnostics, then Gelman-Rubin diagnostic was used as a

numerical support for the convergence of the chains. The Gelman-Rubin approach

is, for each parameter or quantity of interest, to compute the variance of the simu-

lations from each chain, to average these within-chain variances, and compare this

to the variances of all the chains mixed together [Gelman et al., 2011]. Basically,

Gelman-Rubin measures whether there is a significant difference between the vari-

ance within several chains and the variance between several chains by a value that

is called “scale reduction factors”.

4.5.3 Simulation settings

As in section 4.1, Rosenberger and Seshaiyer’s (1997) censoring scheme with recruit-

ment period R = 55 and duration D = 96 was considered. This setup was chosen to

match the experimental setting of a head and neck cancer trial reported by Fountzi-
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las et al. [Fountzilas et al., 2004]. And this setup was also commonly used in a

lot of simulation studies of response adaptive randomization for survival outcome.

The surrogate endpoint for each treatment group was generated from a multinomial

distribution Multi(1, pk,1, pk,2). Different combinations of the response rates of surro-

gate endpoint for each treatment group was considered. The primary survival time

was generated from the mixture of two exponential distributions. We will investi-

gate the performance of our proposed algorithm under different expected survival

times. Table 4.1 lists the different experimental scenario of our simulation study.

Treatment B was considered as the control group and we assume that treatment A

always performs better than treatment B. Furthermore, we assume that the mean

survival time for subjects having a surrogate endpoint in the first category is greater

than the mean survival time if having a surrogate endpoint in the second category.

Scenarios Ia-If correspond to a situation when subjects in treatment A have a higher

rate of having a surrogate endpoint in the first category than in treatment B, and

the mean survival time in treatment A is greater than that in treatment B. IIa-IIe

correspond to a situation when subjects in treatment A have the same rate of having

a surrogate endpoint in the first category as in treatment B, but treatment A has a

higher survival time compared to treatment B. And scenarios IIIa-IIIc correspond

to a situation when subjects in treatment A have a higher rate of having a surrogate

endpoint in the first category than in treatment B, but the mean survival times for

subjects having a surrogate endpoint in the jth category for both treatment groups

are the same. We should note that a larger expected survival times corresponds to

a situation when there is a larger proportion of censoring, which can also be consid-
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ered as a larger proportion of delays. Table 4.1 also lists the proportion of censoring

(or delay) for each treatment group under different clinical scenarios. For example,

under scenario Ia, the proportion of non-censoring for treatment A is 0.49, while

0.80 for treatment B. When the mean survival time for treatment A decreases, the

proportion of non-censoring decreases as well.

The Dirichlet distribution was considered as the prior distribution for the surro-

gate endpoint. For both treatment A and treatment B, we assume that (pk,1, pk,2) ∼

Dir(0.5, 0.5). So γk,0 = γk,1 + γk,2 = 1. Remember in section 4.3.2 we mentioned

that γk,0 reflects the uncertainty of the mixed exponential prior distribution, and the

larger the γk,0 is, the more certain we are of the true values of pk,1 and pk,2. So under

this parameterization for the Dirichlet distribution, we assume that there is a vague

information for the response rates of the surrogate endpoints.

The mean parameters θk,1, θk,2 have an inverse gamma prior. Remember in section

4.3.3 we mentioned that we will put the inverse gamma priors on θk,2 and ∆k where

∆k = θk,1 − θk,2, such that θk,2 ∼ IG(αk,2, βk,2),∆k ∼ IG(αk,0, βk,0), to solve the

label switching problem. In this simulation study, we assume that the expectations

of θk,2 and ∆k equal to their theoretical values for treatment B (control group), such

that θB,2 =
βk,2

αk,2−1
, and ∆B =

βk,0
αk,0−1

. So for scenarios Ia-If, IIa-IIc, and IIIa, we

assume θk,2 ∼ IG(11, 70) and ∆k ∼ IG(11, 280); for scenarios IId-IIe, and IIIb, we

assume θk,2 ∼ IG(11, 70) and ∆k ∼ IG(11, 170); and for scenarios IIIc, we assume

θk,2 ∼ IG(11, 90) and ∆k ∼ IG(11, 490). Under this parameterization, we assume

that the amount of information in these prior distributions is approximately equal

to that from 11 subjects. Furthermore, we assume that the information is from
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the historical data (or control group). This prior setup was chosen based on the

recommendation of Huang et al. (2009), where they explained their considerations

of choosing such a prior: the priors should be reasonably informative in order to

show the difference between response categories of surrogate endpoint, yet they are

not so strong that they can be altered by the data in the ongoing trial [Huang et al.,

2009]. Normally, under the inverse gamma prior distribution, for example IG(α, β),

if the investigators choose α/(α + β) to be small (say, less than or equal to 0.1),

then they wish to have a low prior weight on the historical data. And if they choose

α/(α+ β) to be greater than 0.5, then they want to have a large prior weight on the

historical data [Ibrahim et al., 2005]. In our simulation study, αk,0/(αk,0 + βk,0) for

all the scenarios are smaller than 0.1, and αk,2/(αk,2 + βk,2) is slightly larger than

0.1 (11/(11+70)=0.13, 11/(11+90)=0.11). These parameterizations reflect we put a

relatively low prior weight on the historical data.

As we mentioned before, the proposed algorithm will be compared with the stan-

dard response adaptive randomization, which does not use the information from the

surrogate endpoint. For the standard RAR, we assume that the survival times for

subjects in each treatment group have exponential distributions with mean param-

eters θA and θB, respectively. To estimate these unknown parameters, a Bayesian

approach will be used as well. Similar as what we did for our proposed algorithm, we

will put a vaguely informative prior on θA and θB, such that both θA and θB have an

inverse gamma prior as IG(α0, β0), and β0/(α0 − 1) = θB. So for scenarios Ia-If, we

assume θA, θB ∼ IG(11, 182); for scenarios IIa-Ic, we assume θA, θB ∼ IG(11, 294);

for scenarios IId-Ie, we assume θA, θB ∼ IG(11, 206); for scenario IIIa, we assume
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θA, θB ∼ IG(11, 121); for scenario IIb, we assume θA, θB ∼ IG(11, 154); and for sce-

nario IIIc, we assume θA, θB ∼ IG(11, 237). We will use the posterior means of θA

and θB to obtain the target allocation proportion for the standard RAR procedure.

For the DBCD procedure, α = 2 was chosen based on the recommendation of

Rosenberger and Hu (2004), who showed that such a choice of α provides a reasonable

trade-off between randomness and optimality [Rosenberger and Hu, 2004]. For each

randomization procedure, 10,000 simulations per scenario was performed to evaluate

the performance of our proposed algorithm. To assess the Markov Chain convergence,

3 chains with different set of initial values were used to test whether they all converge

to the same target distribution.

4.5.4 Results

To investigate the performance of our proposed response adaptive randomization

procedure (proposed RAR), we will compare the power, the observed allocation pro-

portion to treatment A, the average number of subjects in treatment A, the average

number of event, and the average total observed survival time under the proposed al-

gorithm with those under the equal allocation randomization and standard response

adaptive randomization.

Table 4.2 shows the comparison of the three randomization procedures in terms

of power for the Wald test. Except for scenarios Ie, If, and IIIc, both the standard re-

sponse adaptive randomization and our proposed adaptive randomization procedure

yield a larger power compared to equal allocation randomization. And for scenarios

Ie, If, and IIIc, the power under the proposed RAR algorithm is similar to that under
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the equal allocation randomization procedure. This is consistent with the conclusion

made by Zhang and Rosenberger that the power under the double-adaptive biased

coin design was as powerful or slightly more powerful than the equal randomization

procedure [Rosenberger and Hu, 2004]. Moreover, the power under our proposed

RAR algorithm is comparable as that under the standard RAR procedure.

Table 4.3 shows the average number of subjects assigned to treatment A, along

with their standard deviations. From table 4.3, one can see that both the standard

response adaptive randomization and our proposed response adaptive randomization

are more ethical than the equal allocation randomization procedure, since both of

them assigned more subjects to treatment A (the group that has a larger mean

survival time), as compared to the equal allocation. Meanwhile, except for scenarios

IId and IIe where the number of subjects assigned to treatment A are the same for

standard and proposed RAR, our proposed algorithm tends to allocate slightly more

subjects to treatment A as compared to the standard RAR. On average, our proposed

algorithm assigns 1 to 5 more subjects to the better treatment group, compared with

the standard RAR procedure.

Table 4.4 shows the observed allocation proportion to treatment A, along with

their standard deviations. As expected, both the standard response adaptive ran-

domization and the proposed adaptive randomization have an allocation proportion

to treatment A greater then 0.5. The allocation proportion under the proposed ran-

domization procedure is slightly greater than that under the standard RAR for all

the experimental scenarios. However, it can be seen from table 4.4 that our proposed

algorithm has higher standard deviations of allocation proportions than the standard
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RAR procedure. When there is a larger percentage of censoring, the difference of

observed allocation proportion between the standard and proposed RAR is larger as

well. For instance, when the proportion of censoring decreases (as in scenarios Ia-If

where the proportion of non-censoring in treatment A increases from 0.49 to 0.70),

the difference of observed allocation proportion to treatment A decreases from 0.024

to 0.002. Thus, the benefit of assigning more subjects to a better treatment under

our proposed algorithm is more obvious when there is a relatively large delay in the

primary outcome, as compared to the standard RAR procedure.

Table 4.5 and table 4.6 show the average number of events and the average total

observed survival time for each of the three randomization procedure, along with the

standard deviations, respectively. Both the standard response adaptive randomiza-

tion and our proposed adaptive randomization reduce the average number of events

(deaths) as compared to the equal allocation procedure. For all the experimental sce-

narios, 3-6 fewer events for both the standard RAR and proposed RAR as compared

to the equal allocation randomization. Compared with standard RAR procedure, our

proposed algorithm has a comparable or a slightly reduced number of events. On

average, our proposed algorithm has 1 fewer event than the standard RAR procedure

for scenarios Ib, Ic, IIIa, and IIIc, and a same number of events as standard RAR

for other scenarios. Even through these reductions is not huge, we still think any

reduction in the number of events is desirable in survival trials. Also, it is known that

in survival analysis, power is directly related to the number of events. Therefore, one

cannot expect a large reduction in the number of events without sacrificing the power

[Sverdlov et al., 2011]. In table 4.6, one can see that except for scenarios IIa-IIc, both
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the standard and proposed RAR have a relatively higher observed total survival time

than the equal allocation randomization procedure. For scenarios IIa-IIc, the equal

allocation procedure has a larger total observed survival time. That may because for

these three scenarios, the percentage of censoring is pretty large, thus at the end of

the trial, the number of subjects having an event that can be used in the analysis is

small. Our proposed algorithm remains a comparable total observed survival time

as the standard response adaptive randomization procedure.

4.6 Discussion

In this chapter, we proposed a new response adaptive randomization procedure for

clinical trials with survival primary endpoints. In clinical trials, especially for survival

trials, censoring is very common. At the meantime, surrogate endpoints can always

be obtained sooner than the primary survival time. When the surrogate endpoints

becomes available, we should not ignore those information. Thus, under our pro-

posed algorithm, we connect the surrogate endpoint with the primary survival time,

and use these information in the adaptive randomization procedure. Specifically,

we model the relationship between the surrogate and primary endpoint through a

mixture model (a mixture of exponential distributions), and estimate the parameters

of interest through a Bayesian approach. Through simulation studies, we find that

our proposed response adaptive randomization is more effective in assigning subjects

to better treatments as compared with equal allocation randomization and as effec-

tive as or even performs better than the standard response adaptive randomization
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procedure. Specifically, the proposed algorithm tends to allocate more subjects to

the better performance group, decreases the average number of events, and remains

a comparable power as compared to the standard response adaptive randomization

procedure.
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Table 4.1: Parameter setup for different experimental scenario

Scenario Sample Size
Treatment A Treatment B

(p1,A, p2,A) (θ1,A, θ2,A) εA (p1,B, p2,B) (θ1,B, θ2,B) εB

Ia 66 (0.7, 0.3) (76, 9) 0.49 (0.4, 0.6) (35, 7) 0.80

Ib 74 (0.7, 0.3) (68, 9) 0.53 (0.4, 0.6) (35, 7) 0.80

Ic 90 (0.7, 0.3) (58, 9) 0.57 (0.4, 0.6) (35, 7) 0.80

Id 134 (0.7, 0.3) (47, 9) 0.63 (0.4, 0.6) (35, 7) 0.80

Ie 182 (0.7, 0.3) (41, 8) 0.67 (0.4, 0.6) (35, 7) 0.80

If 246 (0.7, 0.3) (36, 8) 0.70 (0.4, 0.6) (35, 7) 0.80

IIa 150 (0.8, 0.2) (76, 9) 0.46 (0.8, 0.2) (35, 7) 0.69

IIb 192 (0.8, 0.2) (68, 9) 0.49 (0.8, 0.2) (35, 7) 0.69

IIc 302 (0.8, 0.2) (58, 9) 0.54 (0.8, 0.2) (35, 7) 0.69

IId 142 (0.8, 0.2) (48, 9) 0.60 (0.8, 0.2) (24, 7) 0.78

IIe 224 (0.8, 0.2) (41, 9) 0.64 (0.8, 0.2) (24, 7) 0.78

IIIa 132 (0.7, 0.3) (58, 9) 0.57 (0.3, 0.7) (58, 9) 0.74

IIIb 158 (0.7, 0.3) (35, 7) 0.71 (0.3, 0.7) (35, 7) 0.83

IIIc 226 (0.7, 0.3) (24, 7) 0.80 (0.3, 0.7) (24, 7) 0.97
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Table 4.2: Summary of power of the three randomization procedures using the two-sided
Wald test

Scenario Sample size (N) Equal Allocation Standard RAR Proposed RAR

Ia 66 0.840 0.876 0.875

Ib 74 0.844 0.867 0.865

Ic 90 0.846 0.871 0.864

Id 134 0.871 0.881 0.871

Ie 182 0.862 0.869 0.861

If 246 0.843 0.844 0.842

IIa 150 0.826 0.844 0.844

IIb 192 0.832 0.846 0.846

IIc 302 0.832 0.837 0.840

IId 142 0.824 0.842 0.847

IIe 224 0.834 0.845 0.837

IIIa 132 0.849 0.849 0.860

IIIb 158 0.847 0.855 0.855

IIIc 226 0.849 0.848 0.846
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Table 4.3: Summary of average number of subjects assigned to treatmentA, with standard
deviations (SD) for the three randomization procedures

Scenario Sample size (N) Equal Allocation Standard RAR Proposed RAR

Ia 66 33 (4.05) 47 (4.63) 49 (5.12)

Ib 74 37 (4.30) 53 (5.21) 55 (5.63)

Ic 90 45 (4.78) 64 (6.24) 66 (6.78)

Id 134 67 (5.85) 94 (8.94) 96 (9.53)

Ie 182 91 (6.74) 124 (11.53) 126 (12.20)

If 246 123 (7.85) 162 (14.49) 163 (15.42)

IIa 150 75 (6.14) 102 (10.53) 104 (10.72)

IIb 192 96 (6.93) 128 (12.67) 131 (13.30)

IIc 302 151 (8.79) 195 (18.15) 199 (18.91)

IId 142 71 (5.99) 96 (9.68) 96 (9.56)

IIe 224 112 (7.51) 147 (13.68) 147 (13.53)

IIIa 132 66 (5.78) 91 (8.59) 96 (9.90)

IIIb 158 79 (6.30) 108 (10.36) 112 (10.47)

IIIc 226 113 (7.53) 149 (13.38) 151 (12.47)

83



www.manaraa.com

Table 4.4: Summary of observed allocation proportion to treatment A, with standard
deviations (SD) for the three randomization procedures

Scenario Sample size (N) Equal Allocation Standard RAR Proposed RAR

Ia 66 0.500 (0.0613) 0.715 (0.0702) 0.739 (0.0775)

Ib 74 0.500 (0.0581) 0.713 (0.0704) 0.738 (0.0760)

Ic 90 0.500 (0.0531) 0.709 (0.0693) 0.733 (0.0754)

Id 134 0.500 (0.0437) 0.699 (0.0667) 0.715 (0.0711)

Ie 182 0.500 (0.0370) 0.679 (0.0634) 0.690 (0.0670)

If 246 0.500 (0.0319) 0.660 (0.0589) 0.662 (0.0627)

IIa 150 0.500 (0.0409) 0.679 (0.0702) 0.693 (0.0714)

IIb 192 0.500 (0.0361) 0.668 (0.0660) 0.683 (0.0693)

IIc 302 0.500 (0.0291) 0.646 (0.0601) 0.660 (0.0626)

IId 142 0.500 (0.0422) 0.678 (0.0681) 0.676 (0.0673)

IIe 224 0.500 (0.0335) 0.656 (0.0611) 0.656 (0.0604)

IIIa 132 0.500 (0.0438) 0.691 (0.0650) 0.731 (0.0750)

IIIb 158 0.500 (0.0399) 0.684 (0.0656) 0.706 (0.0663)

IIIc 226 0.500 (0.0333) 0.658 (0.0592) 0.668 (0.0552)
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Table 4.5: Summary of average number of events, with standard deviations (SD) for the
three randomization procedures

Scenario Sample size (N) Equal Allocation Standard RAR Proposed RAR

Ia 66 46 (3.73) 42 (4.10) 42 (4.15)

Ib 74 52 (3.87) 49 (4.36) 48 (4.34)

Ic 90 65 (4.22) 62 (4.70) 61 (4.77)

Id 134 100 (5.03) 96 (5.47) 96 (5.55)

Ie 182 139 (5.71) 135 (6.21) 135 (6.12)

If 246 191 (6.55) 187 (6.93) 187 (7.02)

IIa 150 93 (5.93) 88 (6.54) 88 (6.67)

IIb 192 121 (6.63) 116 (7.31) 116 (7.34)

IIc 302 197 (8.32) 191 (8.91) 191 (8.91)

IId 142 101 (5.36) 97 (9.68) 97 (5.91)

IIe 224 164 (6.68) 160 (7.08) 160 (7.11)

IIIa 132 94 (5.19) 90 (5.62) 89 (5.78)

IIIb 158 125 (5.08) 122 (5.49) 122 (5.45)

IIIc 226 190 (5.47) 188 (5.81) 187 (5.83)
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Table 4.6: Summary of total observed survival time, with standard deviations (SD) for
the three randomization procedures

Scenario Sample size (N) Equal Allocation Standard RAR Proposed RAR

Ia 66 627 (117.75) 642 (123.25) 640 (122.61)

Ib 74 717 (124.02) 738 (133.29) 739 (130.56)

Ic 90 892 (138.67) 926 (145.05) 932 (146.02)

Id 134 1358 (167.82) 1420 (176.44) 1427 (178.78)

Ie 182 1842 (192.62) 1917 (199.46) 1925 (201.80)

If 246 2494 (220.70) 2598 (231.26) 2595 (228.77)

IIa 150 1676 (203.16) 1635 (206.53) 1628 (208.42)

IIb 192 2182 (229.01) 2155 (237.70) 2142 (232.77)

IIc 302 3513 (287.40) 3486 (294.87) 3485 (291.87)

IId 142 1645 (185.74) 1660 (190.01) 1657 (190.63)

IIe 224 2623 (232.30) 2648 (233.43) 2654 (234.64)

IIIa 132 1300 (166.88) 1353 (176.52) 1363 (177.98)

IIIb 158 1527 (169.04) 1615 (181.30) 1627 (178.89)

IIIc 226 2105 (181.25) 2201 (193.09) 2209 (191.32)
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Chapter 5

Discussion and Future Work

The standard response adaptive randomization procedure will be affected by the de-

layed primary endpoint. When there is a large delay time in the primary endpoint,

less information can be used in the randomization procedure, thus the benefit of

assigning more patients to a better treatment group decreases. A surrogate endpoint

is a measurement made after the treatment to determine whether the treatment is

working. Normally, a surrogate endpoint can be obtained earlier than the primary

endpoint. When surrogate endpoint becomes available, the information from the

surrogate endpoint is valuable and should not be ignored. Therefore, we proposed

two response adaptive randomization procedures which will connect the surrogate

endpoint with the primary endpoint through a statistical model and use the accu-

mulated information from both the surrogate and primary endpoints to skew the

allocation proportion.

We first proposed a response adaptive randomization for clinical trials with nor-
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mally distributed primary and surrogate endpoints. We connected the surrogate and

primary endpoints through a bivariate normal distribution model, and introduced a

Bayesian approach to estimate the unknown parameters. We then substituted the

mean and standard deviation of primary endpoint in the target allocation function

with the conditional mean and conditional variance of primary endpoint. As an-

ticipated, the proposed algorithm can assign more patients to the more efficacious

treatment group, and is more powerful than the traditional equal allocation ran-

domization procedure. In addition, our proposed algorithm has advantages over the

standard response adaptive randomization which is solely based on the information

from the primary endpoint. Compared to the standard RAR, our proposed response

adaptive randomization can allocate slightly more patients to the superior treatment

group, and is more robust when there is a large delay in the primary endpoint.

We then consider a clinical trial with survival responses. We proposed a response

adaptive randomization for clinical trials with survival primary endpoint and cate-

gorical surrogate endpoint. We modeled the relationship between the survival time

and surrogate endpoint through a mixture model, and obtained the posterior means

of parameters of interest through a Bayesian model. We then calculated the tar-

get allocation ratio using the posterior estimates of marginal mean survival times.

Through some simulations, we found that the proposed response adaptive can allo-

cate more patients to a better performance treatment group, decrease the average

number of events (deaths), and maintain a comparable power as compared to the

traditional equal allocation randomization procedure. Meanwhile, compared to the

standard response adaptive randomization where only primary endpoint is used in
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the allocation procedure, our proposed algorithm is as effective as, and in most cases,

it performs even better in assigning subjects to better treatments.

There are some limitations with our proposed algorithm. First, both the two pro-

posed approaches assume that the surrogate endpoint can be observed before the next

patient coming in the trial, which is not always the case. In really clinical trials, most

of the surrogate endpoints cannot be observed immediately after the treatment, and

there is usually a lag time to observe a surrogate endpoint. Normally, the surrogate

endpoint can be obtained much sooner than the primary endpoint. Therefore, it will

be more appropriate to model the delay in both the primary and surrogate endpoint.

For example, we can assume that the delay time has an exponential distribution,

and the mean delay time in the surrogate endpoint is less than that in the primary

endpoint. Second, our proposed algorithm only considered one surrogate endpoint.

And for normally distributed primary endpoint, we assume the surrogate endpoint

also has a normal distribution; for survival responses, we assume that the surrogate

endpoint has a multinomial distribution. However, one may have more than one

surrogate endpoint available, and these surrogate endpoints may have distributions

other than normal and multinomial. Thus, in the future, we can consider more than

one surrogate endpoint with some other distributions. Third, in chapter 3, we con-

sidered a clinical trial with normally distributed primary and surrogate endpoints.

We investigated the performance of our proposed algorithm under different correla-

tions between the surrogate and primary endpoint, and found that the correlation

does not have an impact on the performance. As we know, the correlation measures

the linear relationship between the two variables. Instead of using the correlation,
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we can consider the concordance between the surrogate and primary endpoint in the

randomization procedure. Different from the correlation, the concordance measures

the agreement between two measurements. A strong linear correlation between two

variables does not mean there is also a strong concordance. Therefore, we may in-

vestigate the performance of our proposed algorithm under different concordance in

the future. Fourth, in the simulation study for both normally and exponentially

distributed primary outcomes, we only looked at a small number of scenarios. In

the future, we may want to change the parameter setups so we can evaluate the

performance of our proposed algorithm under more scenarios. Fifth, in the doubly

adaptive biased coin design (DBCD), we used α = 2 as recommonded by Zhang and

Rosenberger. For the future works, we may want to look at some other choices of α

in the DBCD function. Finally, in the response adaptive randomization procedure,

the allocation of the next patient dependents on the performance of the previous

patients, and this may have a violation of the assumption that the patients in the

study are independent.
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Appendix A

Chapter 3 appendix

A.1 Bivariate normal distribution model in JAGS

1

2 model{

3

4 # set values for the parameters in the prior distribution

5 R[1,1] <- 1

6 R[1,2] <- 0

7 R[2,1] <- 0

8 R[2,2] <- 1

9 nu <- 4

10 mu0 [1] <- 0

11 mu0 [2] <- 0

12 lambda <- 0.001

13

14 #-------- likelihood ------------#

15

16 for (i in 1:N) {

17

18 # marginal distribution of the surrogate endpoint
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19 Sdata[i] ~ dnorm(mu[1], taus)

20

21 # conditional mean of primary given surrogate

22 muTgvS[i] <- mu[2] + T*(Sdata[i] - mu[1])

23 # conditional distribution of primary endpoint given surrogate

24 Tdata[i] ~ dnorm(muTgvS[i], tauTgvS)

25 }

26

27 # Gamma prior distribution on marginal precision of S

28 as <- (nu -1)/2

29 bs <- R[1,1]/2

30 taus ~ dgamma(as, bs)

31

32 # Gamma prior distribution on conditional precision of Primary given surrogate

33 at <- nu/2

34 bt1 <- R[2,2] - (R[2,1])^2/R[1,1]

35 bt <- bt1/2

36 tauTgvS ~ dgamma(at , bt)

37

38 # Normal prior distribution on Omega_st , where Omega_st is a scalar

39 prmean <- R[1,2] / R[1,1]

40 prprec <- R[1,1] * tauTgvS

41 T ~ dnorm(prmean , prprec)

42

43 #---------- transformations to quantities of interest ------------#

44 # variance of S

45 Sigma [1,1] <- 1/taus

46 # Covariance between S and T

47 Sigma [1,2] <- T*Sigma [1,1]

48 # Variance of T

49 Sigma [2,2] <- 1/tauTgvS + (Sigma [1,2])^2/Sigma [1,1]

50 Sigma [2,1] <- Sigma [1,2]

51

52 # normal prior for mean vectors

53 tau.mu <- inverse(Sigma)*lambda
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54 mu ~ dmnorm(mu0 , tau.mu)

55

56 }

A3 1.R

A.2 Proposed response adaptive randomization pro-

cedure for normally distributed primary out-

come

1 continuous.randomization <-function(isim.start , # start from zero

2 seed , # used in sed.seed function

3 nSims , # number of simulation

4 nSbjs , # total number of patients in the trial

5 n.init , # number of subjects in the equal randomizaition

6 alpha , # nonnegative number in DBCD procedure

7 Chi_square , # Chi -square for the hypothesis test

8 lambda1 , # delay time of primary endpoint for treatment A

9 lambda2 , # delay time of primary endpoint for treatment B

10 lambda3 , # entry time for both treatment groups

11 mu.SA, mu.SB, mu.TA, mu.TB ,

12 sigma.SSA , sigma.SSB , sigma.TTA , sigma.TTB , corr) {

13

14 allocation.prob.matrix = matrix(, nrow=nSims -isim.start , ncol=nSbjs)

15

16 power = {}

17 expected.response = {}

18 N.A.final.vec = {}

19 N.B.final.vec = {}

20 allocation.prop.final.vec = {}

21 TS.vec = {}
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22 convergence.A.vec = {}

23 convergence.B.vec = {}

24

25 mu.A <- c(mu.SA, mu.TA) # mean vector that used to simulate surrogate and primary

endpoint for treatment A

26 mu.B <- c(mu.SB, mu.TB)

27

28 sigma.STA <- corr*sqrt(sigma.SSA)*sqrt(sigma.TTA)

29 sigma.STB <- corr*sqrt(sigma.SSB)*sqrt(sigma.TTB)

30 Sigma.A <- matrix(c(sigma.SSA , sigma.STA , sigma.STA , sigma.TTA), 2, 2) #

Covariance matrix for treatment A

31 Sigma.B <- matrix(c(sigma.SSB , sigma.STB , sigma.STB , sigma.TTB), 2, 2)

32

33 ##################################################

34 ################# DBCD procedure #################

35 ##################################################

36

37 DBCD <- function(muA , sigmaA , muB , sigmaB , alpha , N.A, N.B) {

38 if (is.na(muA) | is.na(muB) | is.na(sigmaA) | is.na(sigmaB) | muA < 0 | muB < 0)

{

39 g.function = 0.5

40 } else {

41 r = sigmaA*sqrt(muB)/sigmaB/sqrt(muA)

42 s = ifelse(muA < muB & r >1 | muA > muB & r<1, 1, 0)

43 rho = ifelse(s==1, sigmaA*sqrt(muB)/(sigmaA*sqrt(muB)+sigmaB*sqrt(muA)), 0.5)

44 x <- N.A/(N.A+N.B)

45 y <- rho

46 if (x==0) {

47 g.function = 1

48 } else if (x==1) {

49 g.function = 0

50 } else{

51 g.function = y*(y/x)^alpha/(y*(y/x)^alpha+(1-y)*((1-y)/(1-x))^alpha)

52 }

53 }
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54 return(g.function)

55 }

56

57

58 set.seed(seed+isim.start)

59

60 for (isim in (isim.start +1):nSims) {

61

62 S.data = {} # surrogate endpoint

63 T.data = {} # primary endpoint

64 trt = {} # treatment indicator

65 et = {} # entry time

66 et.interval = {}

67 dt.interval = {}

68 dt = {} # observed time

69 #delta = {} # indicator variable that equals to 1 if the primary endpoint is

observed

70

71 convergence.A = {}

72 convergence.B = {}

73

74 ##### first , assign n.init subjects to each treatment , and assume that the 2*n.

init subjects ’ primary outcome and surrogate outcome are available

immediately.

75

76 for (i.equal in 1:(2*n.init)) {

77 # first , record the patient ’s entry time

78 entry.t <- rexp(1,1/lambda3)

79 et.interval <- rbind(et.interval , entry.t)

80

81 U = runif(1, min=0, max =1)

82 if(U < 0.5) {

83 A.init = mvrnorm(1, mu.A, Sigma.A)

84 S.data = rbind(S.data , A.init [1])

85 T.data = rbind(T.data , A.init [2])
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86 trt = rbind(trt , 1)

87

88 # simulate the delay time for this patient

89 delay.t <- rexp(1, 1/lambda1)

90 dt.interval <- rbind(dt.interval , delay.t)

91

92 et = rbind(et , 0)

93 dt = rbind(dt , 0)

94 #delta = rbind(delta , 1)

95 } else {

96 B.init = mvrnorm(1, mu.B, Sigma.B)

97 S.data = rbind(S.data , B.init [1])

98 T.data = rbind(T.data , B.init [2])

99 trt = rbind(trt , 2)

100

101 # simulate the delay time for this patient

102 delay.t <- rexp(1, 1/lambda2)

103 dt.interval <- rbind(dt.interval , delay.t)

104

105 et = rbind(et , 0)

106 dt = rbind(dt , 0)

107 #delta = rbind(delta , 1)

108 }

109 }

110

111 ## entry time and observed time

112 et[1] = et.interval [1]

113 dt[1] = et[1] + dt.interval [1]

114 for (i in 2:(2*n.init)) {

115 et[i] = et[i-1] + et.interval[i]

116 dt[i] = et[i] +dt.interval[i]

117 }

118

119 #### randomization procedure

120 for (iSbj in (2*n.init +1):nSbjs) {
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121

122 # first , record the patient ’s entry time

123 entry.t <- rexp(1,1/lambda3)

124 et.interval <- rbind(et.interval , entry.t)

125 et[iSbj] <- et[iSbj -1]+ entry.t

126

127 # then we need to update the indicator variable delta before we assign this

patient

128 threshold <- et[iSbj]

129 delta <- ifelse(dt <=threshold , 1, 0)

130

131 ##########################################################################

132 ## For treatment A and B, get the posterior means for each parameters ####

133 ##########################################################################

134 SA.data <- S.data[trt ==1]

135 TA.data <- T.data[trt ==1]

136 delta.A <- delta[trt ==1]

137 TA.data[delta.A==0] <- NA

138 gibbs.data.A <- list(Sdata=SA.data , Tdata=TA.data , N=length(SA.data))

139 inits.A <- list(list(mu=c(0,0), taus=1, tauTgvS=1, T=0, .RNG.seed =12345 ,

140 .RNG.name="base::Mersenne -Twister"),

141 list(mu=c(2,1), taus =0.5, tauTgvS =0.5, T=0.5, .RNG.seed

=123456 ,

142 .RNG.name="base::Mersenne -Twister"),

143 list(mu=c(1,2), taus=2, tauTgvS =1.5, T=1, .RNG.seed

=1234,

144 .RNG.name="base::Mersenne -Twister"))

145 gibbs.jags.A <- jags.model(file="gibbs_wishart.bug", n.chains=3, inits=

inits.A, data=gibbs.data.A)

146 gibbs.out.A <- coda.samples(gibbs.jags.A, n.iter=5E3 , thin=2, variable.

names=c("mu", "taus", "tauTgvS", "T"))

147 gelman.A <- gelman.diag(gibbs.out.A, multivariate=FALSE)

148 convergence.A.psrf <- ifelse(gelman.A$psrf[,1]<1.1, 0, 1)

149 convergence.A.ind <- sum(convergence.A.psrf)

150 convergence.A <- rbind(convergence.A, convergence.A.ind)
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151 out.A <- summary(gibbs.out.A)

152 T.A <- out.A$statistics [1,1]

153 sigmaTgvS.A <- 1/out.A$statistics [4,1]

154 sigmaTgvS.A.sqrt <- sqrt(sigmaTgvS.A)

155 muT.A <- out.A$statistics [3,1]

156 muS.A <- out.A$statistics [2,1]

157 muTgvS.A <- muT.A + T.A*(mean(SA.data)-muS.A)

158 N.A <- length(SA.data)

159

160 SB.data <- S.data[trt ==2]

161 TB.data <- T.data[trt ==2]

162 delta.B <- delta[trt ==2]

163 TB.data[delta.B==0] <- NA

164 gibbs.data.B <- list(Sdata=SB.data , Tdata=TB.data , N=length(SB.data))

165 inits.B <- list(list(mu=c(0,0), taus=1, tauTgvS=1, T=0, .RNG.seed =12345 ,

166 .RNG.name="base::Mersenne -Twister"),

167 list(mu=c(2,1), taus =0.5, tauTgvS =0.5, T=0.5, .RNG.seed

=123456 ,

168 .RNG.name="base::Mersenne -Twister"),

169 list(mu=c(1,2), taus=2, tauTgvS =1.5, T=1, .RNG.seed

=1234,

170 .RNG.name="base::Mersenne -Twister"))

171 gibbs.jags.B <- jags.model(file="gibbs_wishart.bug", n.chains=3, inits=

inits.B, data=gibbs.data.B)

172 gibbs.out.B <- coda.samples(gibbs.jags.B, n.iter=5E3 , thin=2, variable.

names=c("mu", "taus", "tauTgvS", "T"))

173 gelman.B <- gelman.diag(gibbs.out.B, multivariate=FALSE)

174 convergence.B.psrf <- ifelse(gelman.B$psrf[,1]<1.1, 0, 1)

175 convergence.B.ind <- sum(convergence.B.psrf)

176 convergence.B <- rbind(convergence.B, convergence.B.ind)

177 out.B <- summary(gibbs.out.B)

178 T.B <- out.B$statistics [1,1]

179 sigmaTgvS.B <- 1/out.B$statistics [4,1]

180 sigmaTgvS.B.sqrt <- sqrt(sigmaTgvS.B)

181 muT.B <- out.B$statistics [3,1]
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182 muS.B <- out.B$statistics [2,1]

183 muTgvS.B <- muT.B + T.B*(mean(SB.data)-muS.B)

184 N.B <- length(SB.data)

185

186 # calculate the allocation ratio , and then do the randomization process

187 U = runif(1,min=0, max=1)

188

189 allocation.interim = DBCD(muA=muTgvS.A, sigmaA=sigmaTgvS.A.sqrt , muB=muTgvS.B,

sigmaB=sigmaTgvS.B.sqrt , alpha=alpha , N.A=N.A, N.B=N.B)

190

191 allocation.prob.matrix[isim -isim.start , iSbj] = allocation.interim

192

193 if (U < allocation.interim) {

194 # allocate this patient to trt A

195 sim.A <- mvrnorm(n=1, mu=mu.A, Sigma=Sigma.A)

196 S.data = rbind(S.data , sim.A[1])

197 T.data = rbind(T.data , sim.A[2])

198 trt = rbind(trt , 1)

199

200 # simulate the delay time for this patient

201 delay.t <- rexp(1, 1/lambda1)

202 dt.interval <- rbind(dt.interval , delay.t)

203 dt[iSbj] <- et[iSbj] + delay.t

204

205 } else {

206 sim.B <- mvrnorm(n=1, mu=mu.B, Sigma=Sigma.B)

207 S.data = rbind(S.data , sim.B[1])

208 T.data = rbind(T.data , sim.B[2])

209 trt = rbind(trt , 2)

210

211 # simulate the delay time for this patient

212 delay.t <- rexp(1, 1/lambda2)

213 dt.interval <- rbind(dt.interval , delay.t)

214 dt[iSbj] <- et[iSbj] + delay.t

215 }
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216 }

217

218 ######################################################################

219 ##### point estimate of mean and variance ############################

220 ######################################################################

221 data.final.A <- T.data[trt ==1]

222 data.final.B <- T.data[trt ==2]

223 N.A.final <- length(data.final.A)

224 N.B.final <- length(data.final.B)

225 mu.A.est <- mean(data.final.A)

226 mu.B.est <- mean(data.final.B)

227 sigma2.A.est <- var(data.final.A)

228 sigma2.B.est <- var(data.final.B)

229

230 TS = (mu.A.est - mu.B.est)^2/(sigma2.A.est/N.A.final + sigma2.B.est/N.B.final)

231 TS.vec = rbind(TS.vec , TS)

232

233 N.A.final.vec <- rbind(N.A.final.vec , N.A.final)

234 N.B.final.vec <- rbind(N.B.final.vec , N.B.final)

235

236 allocation.prop.final <- N.A.final/(N.A.final+N.B.final)

237 allocation.prop.final.vec <- rbind(allocation.prop.final.vec , allocation.prop.

final)

238

239 sd.A.est <- sqrt(sigma2.A.est)

240 sd.B.est <- sqrt(sigma2.B.est)

241

242 total.response <- sum(T.data)

243 #total.response <- (N.A.final+N.B.final)*(rho.hat*mu.A.est+(1-rho.hat)*mu.B.est)

244 expected.response <- rbind(expected.response , total.response)

245

246 ## convergence

247 convergence.A.vec <- rbind(convergence.A.vec , sum(convergence.A))

248 convergence.B.vec <- rbind(convergence.B.vec , sum(convergence.B))

249 }
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250

251 power = ifelse(TS.vec > Chi_square , 1, 0)

252 power.est = sum(power)/length(power)

253 N.A.est = mean(N.A.final.vec)

254 N.B.est = mean(N.B.final.vec)

255 #rho.est = mean(rho.final)

256 total.est = mean(expected.response)

257

258 list(power.est=power.est , N.A.est=N.A.est , N.B.est=N.B.est , total.est=total.est ,

259 N.A.final.vec = N.A.final.vec , N.B.final.vec = N.B.final.vec , allocation.prop

.final.vec = allocation.prop.final.vec , expected.response = expected.

response , allocation.prob.matrix=allocation.prob.matrix ,

260 TS.vec = TS.vec , power=power , power.est=power.est , convergence.A.vec =

convergence.A.vec , convergence.B.vec = convergence.B.vec)

261

262

263 }

A3 2.R
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Appendix B

Chapter 4 appendix

B.1 Mixture model in JAGS

1 model {

2 ## likelihood

3 for (i in 1:N) {

4 is.censored[i] ~ dinterval(t.to.event[i], t.cen[i])

5 t.to.event[i] ~ dexp(lambda[i])

6 lambda[i] <- lambda.vec[surrogate[i]]

7 surrogate[i] ~ dcat(pi [1:2])

8 }

9

10 ## prior

11 pi[1:2] ~ ddirch(gamma [])

12 tau ~ dgamma (11, 280)

13 lambda.vec [2] ~ dgamma (11, 70)

14

15 theta.vec[2] <- 1/lambda.vec [2]

16 diff <- 1/tau

17 theta.vec[1] <- theta.vec[2] + diff

18 lambda.vec [1] <- 1/theta.vec[1]
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19

20

21 }

B4 1.R

B.2 Proposed response adaptive randomization pro-

cedure for survival response

1 survival.randomization <- function(isim.start , # start from zero

2 seed , # used in set.seed function

3 nSims , # number of simulations

4 nSbjs , # total number of patients in the trial

5 n.init , # number of subjects in the equal

randomizaition

6 alpha , # nonnegative number in the DBCD procedure

7 weight1.A, weight2.A,

8 weight1.B, weight2.B,

9 theta1.A, theta2.A, # mean survival time

10 theta1.B, theta2.B,

11 R, # patient arrival times follow uniform dist on

[0, R]

12 D,

13 n.iter , n.thin , n.update) {

14

15 allocation.prob.matrix = matrix(, nrow=nSims -isim.start , ncol=nSbjs)

16

17 p.val.vec = {}

18 z.score.vec = {}

19 num.event.vec = {}

20 total.obs.surv.time.vec = {}

21 allocation.prop.final.vec = {}
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22 N.A.final.vec = {}

23 N.B.final.vec = {}

24 convergence.A.vec = {}

25 convergence.B.vec = {}

26

27 convergence.theta1.A.vec = {}

28 convergence.theta2.A.vec = {}

29 convergence.pi1.A.vec = {}

30 convergence.pi2.A.vec = {}

31

32 convergence.theta1.B.vec = {}

33 convergence.theta2.B.vec = {}

34 convergence.pi1.B.vec = {}

35 convergence.pi2.B.vec = {}

36

37 epsilon.final.A.vec = {}

38 epsilon.final.B.vec = {}

39

40 ####### target allocation proportion function ############################

41 #rho <- function(Psi.A, Psi.B, variance.A, variance.B) { #

42 # sd.A = sqrt(variance.A) #

43 # sd.B = sqrt(variance.B) #

44 # rho = (sd.A*sqrt(Psi.B))/(sd.A*sqrt(Psi.B)+sd.B*sqrt(Psi.A)) #

45 # return(rho) #

46 #} #

47 #########################################################################

48

49 ######## the DBCD procedure

50 DBCD <- function(Psi.A, Psi.B, variance.A, variance.B, N.A, N.B) {

51 if (is.na(Psi.A) | is.na(Psi.B)) {

52 g.function = 0.5

53 } else {

54 sd.A = sqrt(variance.A)

55 sd.B = sqrt(variance.B)

56 x = N.A/(N.A+N.B)
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57 y = (sd.A*sqrt(Psi.B))/(sd.A*sqrt(Psi.B)+sd.B*sqrt(Psi.A))

58 if (x==0) {

59 g.function = 1

60 } else if (x==1) {

61 g.function = 0

62 } else{

63 g.function = y*(y/x)^alpha/(y*(y/x)^alpha+(1-y)*((1-y)/(1-x))^alpha)

64 }

65 }

66

67 return(g.function)

68 }

69

70 ######## expected proportion of event function

71 epsilon <- function(theta , D, R) {

72 epsilon = 1 - theta/D + exp(-D/theta)*theta/(D*R)*(exp(R/theta)*(2*theta -R)-2*

theta)

73 return(epsilon)

74 }

75

76 jags.params <- c(’lambda.vec’, ’pi’, ’theta.vec’, ’tau’)

77

78 set.seed(seed+isim.start)

79

80 for (isim in (isim.start +1):nSims) {

81

82 surrogate = {} # surrogate endpoint

83 event.time = {} # event time

84 trt = {}

85 #trt.A = {}

86 #trt.B = {}

87 censor.time = {}

88

89 convergence.A = {}

90 convergence.B = {}
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91

92 convergence.theta1.A = {}

93 convergence.theta2.A = {}

94 convergence.pi1.A = {}

95 convergence.pi2.A = {}

96

97 convergence.theta1.B = {}

98 convergence.theta2.B = {}

99 convergence.pi1.B = {}

100 convergence.pi2.B = {}

101

102

103 #### first , generate the patient arrival time for all the patients

104 arrival.time.disorder <- runif(nSbjs , 0, R)

105 arrival.time = arrival.time.disorder[order(arrival.time.disorder)]

106

107 for (iSbj in 1:nSbjs) {

108

109 censor.time.interim = ifelse(censor.time < arrival.time[iSbj], censor.time ,

arrival.time[iSbj])

110 t.to.event.interim = pmin(event.time , censor.time.interim)

111 isCensored.interim = event.time > censor.time.interim

112 is.censored.interim = as.numeric(isCensored.interim)

113 is.event.interim = 1 - is.censored.interim

114 t.cen.interim <- t.to.event.interim

115 t.to.event.na.interim = t.to.event.interim

116 t.to.event.na.interim[is.censored.interim ==1] <- NA

117

118 surrogate.interim.A = surrogate[trt ==1]

119 surrogate.interim.B = surrogate[trt ==2]

120

121 t.to.event.na.interim.A = t.to.event.na.interim[trt ==1]

122 t.to.event.na.interim.B = t.to.event.na.interim[trt ==2]

123

124 t.cen.interim.A = t.cen.interim[trt ==1]
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125 t.cen.interim.B = t.cen.interim[trt ==2]

126

127 is.censored.interim.A = is.censored.interim[trt ==1]

128 is.censored.interim.B = is.censored.interim[trt ==2]

129

130 is.event.interim.A = is.event.interim[trt ==1]

131 is.event.interim.B = is.event.interim[trt ==2]

132

133 N.A.interim = length(surrogate.interim.A)

134 N.B.interim = length(surrogate.interim.B)

135

136 U = runif(1, 0, 1)

137

138 if (N.A.interim ==0 | N.B.interim ==0 | sum(is.event.interim.A) < 3 | sum(is.

event.interim.B) < 3) {

139 # equal randomization

140 allocation.prob.matrix[isim -isim.start , iSbj] = 0.5

141 if (U < 0.5) {

142 surrogate.A <- rbinom(1, 1, weight1.A)

143 surrogate.A = ifelse(surrogate.A==1, 1, 2)

144 surrogate = rbind(surrogate , surrogate.A)

145 event.time.A <- ifelse(surrogate.A==1, rexp(1, 1/theta1.A), rexp(1, 1/

theta2.A))

146 event.time = rbind(event.time , event.time.A)

147 trt = rbind(trt , 1)

148 } else {

149 surrogate.B <- rbinom(1, 1, weight1.B)

150 surrogate.B = ifelse(surrogate.B==1, 1, 2)

151 surrogate = rbind(surrogate , surrogate.B)

152 event.time.B <- ifelse(surrogate.B==1, rexp(1, 1/theta1.B), rexp(1, 1/

theta2.B))

153 event.time = rbind(event.time , event.time.B)

154 trt = rbind(trt , 2)

155 }

156 } else {
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157 # adaptive randomization

158 ####### initial values for the Bayesian model

159 yInit.A = rep(NA , length(surrogate.interim.A))

160 yInit.A[is.censored.interim.A==1] = t.cen.interim.A[is.censored.interim.A

==1]+1

161

162 inits.A <- list(list(pi=c(0.7, 0.3), lambda.vec=c(NA, 0.02), tau =0.03 , t.to.

event=yInit.A, .RNG.seed =12345 , .RNG.name="base::Mersenne -Twister"),

163 list(pi=c(0.8, 0.2), lambda.vec=c(NA, 0.03), tau=0.02, t.to.

event=yInit.A, .RNG.seed =1234 , .RNG.name="base::Mersenne -

Twister"),

164 list(pi=c(0.5, 0.5), lambda.vec=c(NA, 0.05), tau=0.01, t.to.

event=yInit.A, .RNG.seed =123456 , .RNG.name="base::Mersenne

-Twister"))

165

166 gibbs.data.A <- list(t.to.event = t.to.event.na.interim.A, t.cen = t.cen.

interim.A, is.censored = is.censored.interim.A, N = length(t.to.event.na

.interim.A), surrogate = surrogate.interim.A, gamma = c(0.5, 0.5))

167

168 gibbs.jags.A <- jags(data = gibbs.data.A, inits = inits.A, parameters.to.

save = jags.params , n.iter = n.iter , model.file = ’survival.bug’, n.thin

=n.thin)

169

170 jagsfit.upd.A <- autojags(gibbs.jags.A, n.update=n.update)

171 myfit.A <- as.mcmc(jagsfit.upd.A)

172 out.A <- summary(myfit.A)

173

174 myfit.list.A <- mcmc.list(myfit.A)

175 gelman.A <- gelman.diag(myfit.list.A, multivariate=FALSE)

176 convergence.theta1.A.interim <- ifelse(gelman.A$psrf [7,1]<=1.1, 0, 1)

177 convergence.theta2.A.interim <- ifelse(gelman.A$psrf [8,1]<=1.1, 0, 1)

178 convergence.pi1.A.interim <- ifelse(gelman.A$psrf [4,1]<=1.1, 0, 1)

179 convergence.pi2.A.interim <- ifelse(gelman.A$psrf [5,1]<=1.1, 0, 1)

180 convergence.A.psrf <- ifelse(gelman.A$psrf[c(2,3,6) ,1]<=1.1, 0, 1)

181 convergence.A.ind <- sum(convergence.A.psrf)
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182 convergence.A <- rbind(convergence.A, convergence.A.ind)

183 convergence.theta1.A <- rbind(convergence.theta1.A, convergence.theta1.A.

interim)

184 convergence.theta2.A <- rbind(convergence.theta2.A, convergence.theta2.A.

interim)

185 convergence.pi1.A <- rbind(convergence.pi1.A, convergence.pi1.A.interim)

186 convergence.pi2.A <- rbind(convergence.pi2.A, convergence.pi2.A.interim)

187

188 theta .1. interim.A = out.A$statistics [7,1]

189 theta .2. interim.A = out.A$statistics [8,1]

190 weight .1. interim.A = out.A$statistics [4,1]

191 weight .2. interim.A = out.A$statistics [5,1]

192 theta.interim.A = weight .1. interim.A*theta .1. interim.A+weight .2. interim.A*

theta .2. interim.A ## mean survival time

193 variance.interim.A = theta.interim.A^2

194 epsilon.interim.A = epsilon(theta=theta.interim.A, D=D, R=R)

195 variance.interim.censor.A = variance.interim.A/epsilon.interim.A

196 N.A.interim = length(surrogate.interim.A)

197

198 ## for treatment B

199 ####### initial values for the Bayesian model

200 yInit.B = rep(NA , length(surrogate.interim.B))

201 yInit.B[is.censored.interim.B==1] = t.cen.interim.B[is.censored.interim.B

==1]+1

202

203 inits.B <- list(list(pi=c(0.7, 0.3), lambda.vec=c(NA, 0.02), tau =0.03 , t.to.

event=yInit.B, .RNG.seed =12345 , .RNG.name="base::Mersenne -Twister"),

204 list(pi=c(0.8, 0.2), lambda.vec=c(NA, 0.03), tau=0.02, t.to.

event=yInit.B, .RNG.seed =1234 , .RNG.name="base::Mersenne -

Twister"),

205 list(pi=c(0.5, 0.5), lambda.vec=c(NA, 0.05), tau=0.01, t.to.

event=yInit.B, .RNG.seed =123456 , .RNG.name="base::Mersenne

-Twister"))

206
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207 gibbs.data.B <- list(t.to.event = t.to.event.na.interim.B, t.cen = t.cen.

interim.B, is.censored = is.censored.interim.B, N = length(t.to.event.na

.interim.B), surrogate = surrogate.interim.B, gamma = c(0.5, 0.5))

208

209 gibbs.jags.B <- jags(data = gibbs.data.B, inits = inits.B, parameters.to.

save = jags.params , n.iter = n.iter , model.file = ’survival.bug’, n.thin

=n.thin)

210

211 jagsfit.upd.B <- autojags(gibbs.jags.B, n.update=n.update)

212 myfit.B <- as.mcmc(jagsfit.upd.B)

213 out.B <- summary(myfit.B)

214

215 myfit.list.B <- mcmc.list(myfit.B)

216 gelman.B <- gelman.diag(myfit.list.B, multivariate=FALSE)

217 convergence.theta1.B.interim <- ifelse(gelman.B$psrf [7,1]<=1.1, 0, 1)

218 convergence.theta2.B.interim <- ifelse(gelman.B$psrf [8,1]<=1.1, 0, 1)

219 convergence.pi1.B.interim <- ifelse(gelman.B$psrf [4,1]<=1.1, 0, 1)

220 convergence.pi2.B.interim <- ifelse(gelman.B$psrf [5,1]<=1.1, 0, 1)

221 convergence.B.psrf <- ifelse(gelman.B$psrf[c(2,3,6) ,1]<=1.1, 0, 1)

222 convergence.B.ind <- sum(convergence.B.psrf)

223 convergence.B <- rbind(convergence.B, convergence.B.ind)

224 convergence.theta1.B <- rbind(convergence.theta1.B, convergence.theta1.B.

interim)

225 convergence.theta2.B <- rbind(convergence.theta2.B, convergence.theta2.B.

interim)

226 convergence.pi1.B <- rbind(convergence.pi1.B, convergence.pi1.B.interim)

227 convergence.pi2.B <- rbind(convergence.pi2.B, convergence.pi2.B.interim)

228

229 theta .1. interim.B = out.B$statistics [7,1] # mean survival time

230 theta .2. interim.B = out.B$statistics [8,1]

231 weight .1. interim.B = out.B$statistics [4,1]

232 weight .2. interim.B = out.B$statistics [5,1]

233 theta.interim.B = weight .1. interim.B*theta .1. interim.B + weight .2. interim.B*

theta .2. interim.B ## mean survival time

234 variance.interim.B = theta.interim.B^2
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235 epsilon.interim.B = epsilon(theta=theta.interim.B, D=D, R=R)

236 variance.interim.censor.B = variance.interim.B/epsilon.interim.B

237 N.B.interim = length(surrogate.interim.B)

238

239 ## update the allocation ratio before randomize the next subject

240 Psi.interim.A = 1/theta.interim.A

241 Psi.interim.B = 1/theta.interim.B

242 allocation.interim = DBCD(Psi.A=Psi.interim.A, Psi.B=Psi.interim.B, variance

.A=variance.interim.censor.A, variance.B=variance.interim.censor.B, N.A=

N.A.interim , N.B=N.B.interim)

243

244 allocation.prob.matrix[isim -isim.start , iSbj] = allocation.interim

245

246 if (U < allocation.interim) {

247 ## allocate this patient to trt A

248 surrogate.A <- rbinom(1, 1, weight1.A)

249 surrogate.A = ifelse(surrogate.A==1, 1, 2)

250 surrogate = rbind(surrogate , surrogate.A)

251 event.time.A <- ifelse(surrogate.A==1, rexp(1, 1/theta1.A), rexp(1, 1/

theta2.A))

252 event.time = rbind(event.time , event.time.A)

253 trt = rbind(trt , 1)

254 } else {

255 ## allocate this patient to trt B

256 surrogate.B <- rbinom(1, 1, weight1.B)

257 surrogate.B = ifelse(surrogate.B==1, 1, 2)

258 surrogate = rbind(surrogate , surrogate.B)

259 event.time.B <- ifelse(surrogate.B==1, rexp(1, 1/theta1.B), rexp(1, 1/

theta2.B))

260 event.time = rbind(event.time , event.time.B)

261 trt = rbind(trt , 2)

262 }

263 }

264 ## simulate the censoring time for this patient

265 censor.time.i = runif(1, min=0, max=D)
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266 censor.time = rbind(censor.time , censor.time.i)

267 }

268

269 ### update the data for the last subject

270 censor.time.final = ifelse(censor.time < D, censor.time , D)

271 t.to.event.final = pmin(event.time , censor.time.final)

272 is.censored.final = ifelse(t.to.event.final == censor.time.final , 1, 0)

273 is.event.final = 1 - is.censored.final

274

275 ### log rank test

276 test <- survdiff(Surv(t.to.event.final , is.event.final) ~ trt , rho = 0)

277 p.val <- 1 - pchisq(test$chisq , length(test$n) - 1)

278 p.val.vec <- rbind(p.val.vec , p.val)

279

280 ### number of events in the trial

281 num.event <- sum(is.event.final)

282 num.event.vec <- rbind(num.event.vec , num.event)

283

284 ### total observed survival time

285 total.obs.surv.time <- sum(t.to.event.final*is.event.final)

286 total.obs.surv.time.vec <- rbind(total.obs.surv.time.vec , total.obs.surv.time)

287

288 #############################################################################

289 ########### point estimate of hazard based on primary endpint ###############

290 #############################################################################

291 t.to.event.final.A <- as.vector(t.to.event.final)[trt ==1]

292 t.to.event.final.B <- as.vector(t.to.event.final)[trt ==2]

293 is.event.final.A <- as.vector(is.event.final)[trt ==1]

294 is.event.final.B <- as.vector(is.event.final)[trt ==2]

295 N.A.final <- length(t.to.event.final.A)

296 N.B.final <- length(t.to.event.final.B)

297

298 N.A.final.vec <- rbind(N.A.final.vec , N.A.final)

299 N.B.final.vec <- rbind(N.B.final.vec , N.B.final)

300
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301 ### maximum likelihood estimator

302 theta.marginal.final.A <- sum(t.to.event.final.A)/sum(is.event.final.A)

303 theta.marginal.final.B <- sum(t.to.event.final.B)/sum(is.event.final.B)

304

305 epsilon.final.A <- epsilon(theta=theta.marginal.final.A, D, R)

306 epsilon.final.B <- epsilon(theta=theta.marginal.final.B, D, R)

307

308 epsilon.final.A.vec <- rbind(epsilon.final.A.vec , epsilon.final.A)

309 epsilon.final.B.vec <- rbind(epsilon.final.B.vec , epsilon.final.B)

310

311 ### allocation proportion

312 allocation.prop.final <- N.A.final/(N.A.final+N.B.final)

313 allocation.prop.final.vec <- rbind(allocation.prop.final.vec , allocation.prop.

final)

314

315 ### wald test

316 z.score <- (theta.marginal.final.A-theta.marginal.final.B)/sqrt(theta.marginal.

final.A^2/sum(is.event.final.A)+theta.marginal.final.B^2/sum(is.event.final.

B))

317 z.score.vec <- rbind(z.score.vec , z.score)

318

319 ### convergence

320 convergence.A.vec <- rbind(convergence.A.vec , sum(convergence.A))

321 convergence.B.vec <- rbind(convergence.B.vec , sum(convergence.B))

322

323 convergence.theta1.A.vec <- rbind(convergence.theta1.A.vec , sum(convergence.

theta1.A))

324 convergence.theta2.A.vec <- rbind(convergence.theta2.A.vec , sum(convergence.

theta2.A))

325 convergence.pi1.A.vec <- rbind(convergence.pi1.A.vec , sum(convergence.pi1.A))

326 convergence.pi2.A.vec <- rbind(convergence.pi2.A.vec , sum(convergence.pi2.A))

327

328 convergence.theta1.B.vec <- rbind(convergence.theta1.B.vec , sum(convergence.

theta1.B))
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329 convergence.theta2.B.vec <- rbind(convergence.theta2.B.vec , sum(convergence.

theta2.B))

330 convergence.pi1.B.vec <- rbind(convergence.pi1.B.vec , sum(convergence.pi1.B))

331 convergence.pi2.B.vec <- rbind(convergence.pi2.B.vec , sum(convergence.pi2.B))

332 }

333

334 test.result = ifelse(p.val.vec < 0.05, 1, 0)

335 power = sum(test.result)/length(test.result)

336 N.A.est = mean(N.A.final.vec)

337 N.B.est = mean(N.B.final.vec)

338 num.event.est = mean(num.event.vec)

339 total.obs.surv.time.est = mean(total.obs.surv.time.vec)

340 allocation.prop.est = mean(allocation.prop.final.vec)

341 epsilon.A.est = mean(epsilon.final.A.vec)

342 epsilon.B.est = mean(epsilon.final.B.vec)

343

344 list(power=power , N.A.est=N.A.est , N.B.est=N.B.est , num.event.est=num.event.est ,

total.obs.surv.time.est=total.obs.surv.time.est , allocation.prop.est=

allocation.prop.est , epsilon.A.est=epsilon.A.est , epsilon.B.est=epsilon.B.est ,

p.val.vec=p.val.vec , N.A.final.vec=N.A.final.vec , N.B.final.vec=N.B.final.vec

, allocation.prop.final.vec=allocation.prop.final.vec , convergence.A.vec=

convergence.A.vec , convergence.B.vec=convergence.B.vec , num.event.vec=num.

event.vec , total.obs.surv.time.vec=total.obs.surv.time.vec , epsilon.final.A.

vec=epsilon.final.A.vec , epsilon.final.B.vec=epsilon.final.B.vec , convergence.

theta1.A.vec=convergence.theta1.A.vec , convergence.theta2.A.vec=convergence.

theta2.A.vec , convergence.pi1.A.vec=convergence.pi1.A.vec ,

345 convergence.pi2.A.vec=convergence.pi2.A.vec , convergence.theta1.B.vec=convergence.

theta1.B.vec , convergence.theta2.B.vec=convergence.theta2.B.vec , convergence.

pi1.B.vec=convergence.pi1.B.vec ,

346 convergence.pi2.B.vec=convergence.pi2.B.vec , allocation.prob.matrix=allocation.

prob.matrix , z.score.vec = z.score.vec)

347

348

349 }
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B4 2.R
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